Gravitational Wave Astronomy Riccardo Sturani International Institute of Physics - UFRN - Natal (Brazil) Dark Universe ICTP-SAIFR, Oct 25th, 2019 Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 1 / 29 GW basics in 1 slide Gauged fixed metric perturbations hµν after discarding h0µ components, which are not radiative transverse waves ! h+ h× 0 hij = h× h+ 0 0 − 1 0 0 0 @ 2 pol.A state like any mass-less particle h+ h× Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 2 / 29 LIGO and Virgo: very precise rulers Robert Hurt (Caltech) Light intensity / light travel difference in perpendicular arms Effective optical path increased by factor N ∼ 500 via Fabry-Perot cavities Phase shift ∆φ ∼ 10−8 can be measured ∼ 2πN∆L/λ ! ∆L ∼ 10−15=N m Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 3 / 29 Almost omnidirectional detectors Detectors measure hdet : linear combination F+h+ + F×h× L H -101 F+ F× h+;× depend on source pattern functions F+;× depend on orientation source/detector Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 4 / 29 Almost omnidirectional detectors Detectors measure hdet : linear combination F+h+ + F×h× L V -101 F+ F× h+;× depend on source pattern functions F+;× depend on orientation source/detector Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 4 / 29 2 2 Pattern functions: F+ + F × p Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 5 / 29 The LIGO and Virgo observatories • Observation run O1 Sept '15 - Jan '16 ∼ 130 days, with 49.6 days of actual data, PRX (2016) 4, 041014, 2 detectors,3BBH • O2 Dec. '16 { Jul'17 2 det's + Aug '17 3 det's 3(+4) BBH +1BNS in double(triple) coinc. • O3a:3 detectors, Apr 2nd - Oct 1st 2019 • O3b: Nov 1st { 6 months In ∼ end of 2019 Japanese KAGRA and ∼ 2025 Indian INDIGO will join the collaboration Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 6 / 29 Wave generation: localized sources Einstein formula relates hij to the source quadrupole moment Qij Z 1 Q = d 3xρ x x − δ x 2 ; v 2 ' G M=r ; η ≡ m m =M2 ij i j 3 ij N 1 2 2G d 2Q 2G ηMv 2 h ∼ g(θ ) N ij ' N cos(2φ(t)) ij LN D dt2 D r −3=2 M 1=2 M −1 f = 2kHz < fMax ' 12kHz 30Km 3M 3M f 1=3 M 1=3 1 v = 0:3 < p 1kHz M 6 Geometric factor g(θLN ) takes account of transversality projection (angular momentum L of the binary, observation direction N) 1 + cos2(θ ) Mv 2 h ∼ LN η cos φ(t =M; η; S 2=m4;:::) + 2 D s i i Mv 2 h ∼ cos(θ ) η sin φ(t =M; η; : : :) × LN D s Amplitudes of 2 polarizations modulated by θLN (h % for θLN &0), never both vanishing unlike dipolar motion for the electromagnetic case Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29 Wave generation: localized sources Einstein formula relates hij to the source quadrupole moment Qij Z 1 Q = d 3xρ x x − δ x 2 ; v 2 ' G M=r ; η ≡ m m =M2 ij i j 3 ij N 1 2 2G d 2Q 2G ηMv 2 h ∼ g(θ ) N ij ' N cos(2φ(t)) ij LN D dt2 D r −3=2 M 1=2 M −1 f = 2kHz < fMax ' 12kHz 30Km 3M 3M f 1=3 M 1=3 1 v = 0:3 < p 1kHz M 6 Geometric factor g(θLN ) takes account of transversality projection (angular momentum L of the binary, observation direction N) 1 + cos2(θ ) M(1 + z)v 2 h ∼ LN η cos φ(t =(M(1 + z)); η; S 2=m4;:::) + 2 D(1 + z) O i i M(1 + z)v 2 h ∼ cos(θ ) η sin φ(t =(M(1 + z)); η; : : :) × LN D(1 + z) O Amplitudes of 2 polarizations modulated by θLN (h % for θLN &0), never both vanishing unlike dipolar motion for the electromagnetic case Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29 Wave generation: localized sources Einstein formula relates hij to the source quadrupole moment Qij Z 1 Q = d 3xρ x x − δ x 2 ; v 2 ' G M=r ; η ≡ m m =M2 ij i j 3 ij N 1 2 2G d 2Q 2G ηMv 2 h ∼ g(θ ) N ij ' N cos(2φ(t)) ij LN D dt2 D r −3=2 M 1=2 M −1 f = 2kHz < fMax ' 12kHz 30Km 3M 3M f 1=3 M 1=3 1 v = 0:3 < p 1kHz M 6 Geometric factor g(θLN ) takes account of transversality projection (angular momentum L of the binary, observation direction N) 2 2 1 + cos (θLN ) Mv 2 4 h+ ∼ η cos φ(tO =M; η; Si =mi ;:::) 2 dL Mv 2 h× ∼ cos(θLN ) η sin φ(tO =M; η; : : :) dL Amplitudes of 2 polarizations modulated by θLN (h % for θLN &0), never both vanishing unlike dipolar motion for the electromagnetic case h sensitive to red-shifted masses M ! M(1 + z) ≡ M Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 7 / 29 Binary systems and compact detected so far Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 8 / 29 https://www.gw-openscience.org/catalog/ Binary black hole events in O1 and O2 1.00 1.0 0.75 0.8 0.50 0.25 See however Princeton's group 0.6 o f r f t s e 0.00 a p results 0.4 0.25 0.50 arXiv:1904.07214 LVC-reported 0.2 0.75 This work Zackay et al. (2019) 1.00 0.0 20 40 60 80 100 source Mtot (M ) Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 9 / 29 Sky localization of GW binary systems detected so far 60° GW170104 60° 60° 60° GW170608 GW170823 GW151012 GW170729 GW151226 30° 30° 30° 30° 0° 0° GW170818 0h 21h 18h 15h 12h 9h GW170104 6h 3h 0h 0h 21h 18h 15h 12h 9h 6h 3h 0h GW170104 GW170809 -30° -30° -30° -30° GW170729 GW170817 GW151012 GW170823 GW150914 -60° GW170814 -60° -60° GW151226 -60° Sky localization regions shrinks when Virgo in: 3rd detector matters! LIGO/Virgo 1811.12907 Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 10 / 29 Astro sources emitting transient GWs/EM/ν radiation 2 Coalescing binary systems of compact objects: η ≡ m1m2=M 5=3 2=3 −2 M fmax ∆EGW ∼ 4 × 10 M η 3M 1 kHz A good proxy of the fmax is the Innermost Stable Circular Orbit frequency 1 1 M −1 fISCO = p ' 2kHz 6 6 M M For NS-NS/BH ejected material supposed to produce short (< 2 sec) GRBs Eγ ∼keV-MeV, ejected sub-relativistic material may produce radio signals TeV-PeV ν @ γ emission ν: baryon loaded jets may emit νs: PeV-EeV ν @ optical afterglow NS-NS/BH ! energetic outflows at different timescale/wavelength Rapid neutron capture in the sub-relativistic ejecta can produce a kilonova or macronova, with optical and near-infrared signal (hours - weeks) Eventually radio blast from sub-relativistic outflow (months to years) LIGO/Virgo + EM partners ApJ Let. 2016 Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 11 / 29 Association with 20 short GRB during O1 (before GW170817) 100 10−1 cumulative distribution BNS exclusion NS-BH exclusion BNS extrapolation NS-BH extrapolation EM observation 10−2 10−2 10−1 100 redshift GW searched in a [-5,+1) sec window with GRB GW constraints far from EM exclusion distance, but extrapolation to design Advanced LIGO sensitivity (2 years of data) will lead to detection/non-trivial constraints LIGO/Virgo Astrophys.J. 841 (2017) no.2, 89 Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 12 / 29 GW170817 GW trigger on Aug 17th, 2017, ended at 12h 41' 04.4" UTC, first in in LIGO Hanford, then confirmed as a triple coincidence ! localized in an area of ∼ 28 deg2 GRB trigger from Fermi-GBM 1.7" after first optical image 10.87 hr afterwards by One-Meter Two Hemisphere team with Swope telescope at Las Campanas Observatory in Chile X obtained by the X-Ray Telescope on Swift after 14.9 h (NuSTAR 16.8 h) radio (∼ 3; 6 GHz) by VLA 16 days after GW event LIGO/Virgo & Partner Astronomy groups, Astrophys.J. 848 (2017) no.2, L12 Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 13 / 29 An example of the optical image Transient Optical Robotic Observatory of the South Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 14 / 29 GW170817 and ν detectors Potential νs down-going for Antares and IceCube, grazing for Auger Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 15 / 29 GW170817 and ν detectors Potential νs down-going for Antares and IceCube, grazing for Auger Source location at optical detection Riccardo Sturani (IIP-UFRN) Gravitational Wave Astronomy DU - Oct 25th, 2019 15 / 29 ANTARES and ICECube look for ν GW170817 Neutrino limits (fluence per flavor: x + x) 103 ±500 sec time-window ANTARES 2 ] 10 2 Auger m 1 c 10 IceCube V e 0 G 10 [ 0 Kimura et al. IceCube and ANTARES looked for F 4 2 10 1 EE moderate E µ ν sec 8 at 500 , observation for 2 2 − 10 Kimura et al.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages62 Page
-
File Size-