Mathematical Tripos: IA Algebra & Geometry (Part I) Contents

Mathematical Tripos: IA Algebra & Geometry (Part I) Contents

Mathematical Tripos: IA Algebra & Geometry (Part I) Contents 0 Introduction i 0.1 Schedule . i 0.2 Lectures . ii 0.3 Printed Notes . ii 0.4 Example Sheets . iii 0.5 Acknowledgements. iii 0.6 Revision. iv 1 Complex Numbers 1 1.0 Why Study This? . 1 1.1 Introduction . 1 1.1.1 Real numbers . 1 1.1.2 The general solution of a quadratic equation . 1 1.1.3 Complex numbers . 1 1.2 Algebraic Manipulation of Complex Numbers . 2 1.3 Functions of Complex Numbers . 2 1.3.1 Complex conjugate . 2 1.3.2 Modulus . 3 1.4 The Argand Diagram . 3 1.5 Polar (Modulus/Argument) Representation . 5 1.5.1 Geometric interpretation of multiplication . 5 1.6 The Exponential Function . 6 1.6.1 The real exponential function . 6 1.6.2 The complex exponential function . 7 1.6.3 The complex trigonometric functions . 7 1.6.4 Relation to modulus/argument form . 8 This is a supervisor’s copy of the notes. It is not to be distributed to students. 1.6.5 Modulus/argument expression for 1 . 8 1.7 RootsofUnity .............................................. 8 1.8 De Moivre’s Theorem . 9 1.9 Logarithms and Complex Powers . 10 1.9.1 Complex powers . 10 1.10 Lines and Circles in the Complex Plane . 11 1.10.1 Lines . 11 1.10.2 Circles . 11 1.11 M¨obius Transformations . 11 1.11.1 Composition . 12 Mathematical Tripos: IA Algebra & Geometry (Part I) a c [email protected], Michaelmas 2006 1.11.2 Inverse . 12 1.11.3 Basic Maps . 13 1.11.4 The general M¨obiusmap . 14 2 Vector Algebra 15 2.0 Why Study This? . 15 2.1 Vectors . 15 2.1.1 Geometric representation . 15 2.2 Properties of Vectors . 16 2.2.1 Addition . 16 2.2.2 Multiplication by a scalar . 16 2.2.3 Example: the midpoints of the sides of any quadrilateral form a parallelogram . 17 2.3 Scalar Product . 18 2.3.1 Properties of the scalar product . 18 2.3.2 Projections . 18 2.3.3 Another property of the scalar product . 19 2.3.4 Example: the cosine rule . 19 2.4 Vector Product . 19 2.4.1 Properties of the vector product . 20 2.4.2 Vector area of a triangle/parallelogram . 21 2.5 Triple Products . 21 2.5.1 Properties of the scalar triple product . 21 2.6 Bases and Components . 22 2.6.1 Two dimensional space . 22 2.6.2 Three dimensional space . 23 2.6.3 Higher dimensional spaces . 24 2.7 Components . 24 2.7.1 The Cartesian or standard basis in 3D . 24 2.7.2 Direction cosines . 25 This is a supervisor’s copy of the notes. It is not to be distributed to students. 2.8 Vector Component Identities . 25 2.9 Polar Co-ordinates . 26 2.9.1 2D plane polar co-ordinates . 26 2.9.2 Cylindrical polar co-ordinates . 27 2.9.3 Spherical polar co-ordinates (cf. height, latitude and longitude) . 28 2.10 Suffix Notation . 30 2.10.1 Dyadic and suffix equivalents . 30 2.10.2 Summation convention . 31 2.10.3 Kronecker delta . 32 2.10.4 More on basis vectors . 32 2.10.5 The alternating tensor or Levi-Civita symbol . 33 Mathematical Tripos: IA Algebra & Geometry (Part I) b c [email protected], Michaelmas 2006 2.10.6 The vector product in suffix notation . 33 2.10.7 An identity . 34 2.10.8 Scalar triple product . 34 2.10.9 Vector triple product . 34 2.11 Vector Equations . 35 2.12 Lines and Planes . 35 2.12.1 Lines . 35 2.12.2 Planes . 36 2.13 Cones and Conic Sections . 37 2.14 Maps: Isometries and Inversions . 39 2.14.1 Isometries . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    102 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us