REPRESENTATIONS of FINITE GROUPS 1. Definition And

REPRESENTATIONS of FINITE GROUPS 1. Definition And

<p>REPRESENTATIONS OF FINITE GROUPS </p><p>1. Definition and Introduction </p><p>1.1. Definitions. Let V be a vector space over the field C of complex numbers and let GL(V ) be the group of isomorphisms of V onto itself. An element a of GL(V ) is a linear mapping of V into V which has a linear inverse a<sup style="top: -0.3299em;">−1</sup>. When&nbsp;V has dimension n and has a finite basis (e<sub style="top: 0.1364em;">i</sub>)<sup style="top: -0.3299em;">n</sup><sub style="top: 0.2547em;">i=1</sub>, each map a : V → V is defined by a square matrix (a<sub style="top: 0.1364em;">ij</sub>) of order n. The coefficients a<sub style="top: 0.1363em;">ij </sub>are complex numbers. They are obtained by expressing the image a(e<sub style="top: 0.1363em;">j</sub>) in terms of the basis (e<sub style="top: 0.1363em;">i</sub>): </p><p>X</p><p>a(e<sub style="top: 0.1363em;">j</sub>) = </p><p>a<sub style="top: 0.1363em;">ij</sub>e<sub style="top: 0.1363em;">i</sub>. </p><p>i</p><p>Remark 1.1. Saying that a is an isomorphism is equivalent to saying that the determinant det(a) = det(a<sub style="top: 0.1363em;">ij</sub>) of a is not zero.&nbsp;The group GL(V ) is thus identified with the group of invertible square matrices of order n. </p><p>Suppose G is a finite group with identity element 1. A representation of a finite group <br>G on a finite-dimensional complex vector space V is a homomorphism ρ : G → GL(V ) of G to the group of automorphisms of V . We&nbsp;say such a map gives V the structure of a G-module. The dimension V is called the degree of ρ. </p><p>Remark 1.2. When there is little ambiguity of the map ρ, we sometimes call V itself a representation of G. In this vein we often write gv˙ or gv for ρ(g)v. </p><p>Remark 1.3. Since ρ is a homomorphism, we have equality </p><p>ρ(st) = ρ(s)ρ(t) for s, t ∈ G. </p><p>In particular, we have </p><p></p><ul style="display: flex;"><li style="flex:1">ρ(1) = 1, ,&nbsp;ρ(s<sup style="top: -0.3754em;">−1</sup>) = ρ(s)<sup style="top: -0.3754em;">−1 </sup></li><li style="flex:1">.</li></ul><p></p><p>A map ϕ between two representations V and W of G is a vector space map ϕ : V → W such that </p><p>ϕ</p><p>V −−−−→ W </p><p>y<br>y</p><p></p><ul style="display: flex;"><li style="flex:1">g</li><li style="flex:1">g</li></ul><p></p><p>(1.1) </p><p>V −−−−→ W </p><p>ϕ</p><p>commutes for all g ∈ G. We will call this a G-linear map when we want to distinguish it from an arbitrary linear map between the vector spaces V and W. We&nbsp;can then define Ker ϕ, Im&nbsp;ϕ, and Coker&nbsp;ϕ, which are also G-modules. (Check this.) </p><p>∗</p><p>These are some notes I wrote for the students in the class Representations of Finite Groups SS2013. <br>The materials are from the following two books. </p><p>J. P. Serre Linear representations of finite groups GTM42 </p><p>W. Fulton; J. Haris Representation theory Part 1, GTM129 </p><p>1<br>2</p><p>1.2. Basic examples. </p><p>1.2.1. Characters. A representation of degree 1 of a group G is a homomorphism ρ : G → C<sup style="top: -0.3299em;">×</sup>, where C<sup style="top: -0.3299em;">× </sup>denotes the multiplicative group of nonzero complex numbers. Since </p><p>each element of G has finite order, the values ρ(g) of ρ are roots of unity.&nbsp;In particular, |ρ(g)| = 1.&nbsp;Degree 1 representations are called characters. <br>If we take ρ(g) = 1 for all g ∈ G, we obtain a representation of G which is called the trivial representation or the unit representation. </p><p>1.2.2. Regular representation. Let |G| be the order of G, and let V be a vector space of dimension |G| with basis (e<sub style="top: 0.1363em;">g</sub>)<sub style="top: 0.1363em;">g∈G </sub>indexed by the elements g of G. For g ∈ G, let ρ(g) be the linear map of V into V which sends e<sub style="top: 0.1364em;">g </sub>to e<sub style="top: 0.1482em;">gh</sub>. This&nbsp;defines a linear representation, which is called the regular representation of G. Its&nbsp;degree is equal to the order of G. Note that e<sub style="top: 0.1364em;">g </sub>= ρ<sub style="top: 0.1364em;">g</sub>(e<sub style="top: 0.1364em;">1</sub>). Hence the images of e<sub style="top: 0.1364em;">1 </sub>form a basis of V . Conversely, let W be a representation of G containing a vector w such that ρ<sub style="top: 0.1363em;">g</sub>(w) for g ∈ G form a basis of W, then W is isomorphic to the regular representation. Define τ : V → W by τ(e<sub style="top: 0.1363em;">g</sub>) = ρ<sub style="top: 0.1363em;">g</sub>(w), then τ gives us such an isomorphism. </p><p>1.2.3. Permutation representations. Suppose that G acts on a finite set X. This&nbsp;means that, for each g ∈ G, there is a permutation x → gx of X, satisfying the identities </p><p>1x = x; g(hx) = (gh)x if g, h ∈ G, x ∈ X. </p><p>Let V be a vector space having a basis (e<sub style="top: 0.1363em;">x</sub>)<sub style="top: 0.1363em;">x∈X </sub>indexed by the elements of X. For g ∈ G, let ρ<sub style="top: 0.1364em;">g </sub>be the linear map of V into V which sends e<sub style="top: 0.1364em;">x </sub>to e<sub style="top: 0.1364em;">gx</sub>. The&nbsp;linear representation of G thus obtained is called the permutation representation associated with X. </p><p>1.3. Subrepresentations and irreducible representations. </p><p>1.3.1. Some linear algebra.&nbsp;Let V be a vector space, and let W and W<sup style="top: -0.3299em;">0 </sup>be two subspaces of V . The space V is said to be the direct sum of W and W<sup style="top: -0.3299em;">0 </sup>if each x ∈ V can be written uniquely in the form x = w + w<sup style="top: -0.3299em;">0</sup>, with w ∈ W and w<sup style="top: -0.3299em;">0 </sup>∈ W<sup style="top: -0.3299em;">0</sup>. This&nbsp;amounts to saying that the intersection W ∩ W<sup style="top: -0.3299em;">0 </sup>= 0 and that dim&nbsp;V = dim&nbsp;W + dim W<sup style="top: -0.3299em;">0</sup>. We&nbsp;then write V = W ⊕ W<sup style="top: -0.3298em;">0 </sup>and say that W<sup style="top: -0.3298em;">0 </sup>is a complement of W in V . The&nbsp;mapping p which sends each x ∈ V to its component of w ∈ W is called the projection of V onto W associated with the decomposition V = W ⊕ W<sup style="top: -0.3299em;">0</sup>. The&nbsp;image of p is W and p(x) = x for x ∈ W. Conversely, if p is a linear map of V into itself satisfying these two properties, one checks that V is the direct sum of W and the kernel W<sup style="top: -0.3299em;">0 </sup>of p. </p><p>1.3.2. Subrepresentations. A subrepresentation of a representation V is a vector subspace W of V which is invariant under G. A representation V is called irreducible if there is no proper nonzero invariant subspace W of V . </p><p>Example 1.4. Take V for example the regular representation of G, and let W be the </p><p>P</p><p>subspace of dimension 1 of V generated by the element x = <sub style="top: 0.2688em;">g∈G </sub>e<sub style="top: 0.1363em;">g</sub>. We&nbsp;have ρ<sub style="top: 0.1363em;">g</sub>x = x for all g ∈ G. Therefore,&nbsp;W is a subrepresentation of V , isomorphic to the unit representation. Later we will determine all the subrepresentations of the regular representation. </p><p>Theorem 1.5. Let ρ : G → GL(V ) be a linear representation of G in V and let W be a vector subspace of V stable under G. Then&nbsp;there exists a complement W<sup style="top: -0.3299em;">0 </sup>of W in V which stable under G. </p><p>3</p><p>Proof. We give two proofs of this theorem. <br>(1) Recall a Hermitian product on V is a map ( , ) : V × V → C such that </p><p>• (w, z) = (z, w) • (w + w<sup style="top: -0.3299em;">0</sup>, z) = (w, z) + (w<sup style="top: -0.3299em;">0</sup>, z) </p><p>• (aw, bz) = a¯b(w, z) </p><p>Let H<sub style="top: 0.1363em;">0 </sub>be any Hermitian product on V , we define </p><p>X</p><p></p><ul style="display: flex;"><li style="flex:1">H(x, y) = </li><li style="flex:1">H<sub style="top: 0.1364em;">0</sub>(gx, gy). </li></ul><p></p><p>g∈G </p><p>It is easy to check that H is also a Hermitian product on V and H(gx, gy) = H(x, y). Let W<sup style="top: -0.3298em;">0 </sup>be the orthogonal complement of W in V . Then&nbsp;W<sup style="top: -0.3298em;">0 </sup>is stable under G and we have our theorem. <br>(2) Let W<sup style="top: -0.3299em;">0 </sup>be any complement of W in V and let p be the corresponding projection of <br>V onto W. Form the average p<sup style="top: -0.3299em;">0 </sup>of the conjugates of p by the elements of G: </p><p>X</p><p>1</p><p>p<sup style="top: -0.3753em;">0 </sup>= </p><p></p><ul style="display: flex;"><li style="flex:1">ρ<sub style="top: 0.1363em;">g </sub>◦ p ◦ ρ<sup style="top: -0.3753em;">−</sup><sub style="top: 0.2247em;">g </sub><sup style="top: -0.3753em;">1 </sup></li><li style="flex:1">.</li></ul><p></p><p>|G| </p><p>g∈G </p><p>Since p maps V into W and ρ<sub style="top: 0.1363em;">g </sub>preserves W we see that p<sup style="top: -0.3299em;">0 </sup>maps V into W. Note&nbsp;that ρ<sup style="top: -0.3299em;">−</sup><sub style="top: 0.2247em;">g </sub><sup style="top: -0.3299em;">1</sup>x ∈ W for x ∈ W, so p<sup style="top: -0.3299em;">0</sup>x = x. Thus p<sup style="top: -0.3299em;">0 </sup>is a projection of V onto W, corresponding to some complement W<sup style="top: -0.3299em;">0 </sup>of W. It is easy to check that </p><p>ρ<sub style="top: 0.1363em;">g </sub>◦ p<sup style="top: -0.3754em;">0 </sup>◦ ρ<sup style="top: -0.3754em;">−</sup><sub style="top: 0.2247em;">g </sub><sup style="top: -0.3754em;">1 </sup>= p<sup style="top: -0.3754em;">0</sup>. </p><p>Thus ρ<sub style="top: 0.1363em;">g </sub>◦ p<sup style="top: -0.3299em;">0 </sup>= p<sup style="top: -0.3299em;">0 </sup>◦ ρ<sub style="top: 0.1363em;">g</sub>. If&nbsp;x ∈ W<sup style="top: -0.3299em;">0 </sup>and g ∈ G, we have p<sup style="top: -0.3299em;">0</sup>x = 0, so p<sup style="top: -0.3299em;">0</sup>gx = xp<sup style="top: -0.3299em;">0</sup>x = 0.&nbsp;That shows that W<sup style="top: -0.3299em;">0 </sup>is stable under G and the theorem follows. </p><p>ꢀ</p><p>1.3.3. Irreducible representations. Let V be a representation of G. By&nbsp;definition, V is irreducible if V is not the direct sum of two representations except for the trivial decomposition V = 0 ⊕ V . A representation of degree 1 is evidently irreducible. </p><p>Theorem 1.6. Every representation is a direct sum of irreducible representations. </p><p>Proof. Let V be a linear representation of G. We&nbsp;proceed by induction on dim(V ). If dim(V ) = 0, there is nothing to prove.&nbsp;Suppose that dim(V ) ≥ 1. If&nbsp;V is irreducible, there is nothing to prove. Otherwise, because of last theorem, V can be decomposed into a direct sum V <sup style="top: -0.3299em;">0 </sup>⊕ V <sup style="top: -0.3299em;">00 </sup>with dim(V <sup style="top: -0.3299em;">0</sup>) &lt; dim(V ) and dim(V <sup style="top: -0.3299em;">00</sup>) &lt; dim(V ). By the induction hypothesis, V <sup style="top: -0.3299em;">0 </sup>and V <sup style="top: -0.3299em;">00 </sup>are direct sums of irreducible representations, and so the same is true for V . </p><p>ꢀ</p><p>Remark 1.7. Let V be a representation of G, and let V = W<sub style="top: 0.1364em;">1</sub>⊕· · ·⊕W<sub style="top: 0.1481em;">k </sub>be a decomposition of V into a direct sum of irreducible representations. We can ask if this decomposition is unique. The&nbsp;case where all the ρ<sub style="top: 0.1363em;">g </sub>are equal to 1 shows that this is not true in general. Nevertheless, we will show later that the number of W<sub style="top: 0.1363em;">i </sub>isomorphic to a given irreducible representation does not depend on the chosen decomposition. </p><p>4</p><p>1.4. Schur’s Lemma. </p><p>Theorem 1.8. If V and W are irreducible representations of G and ϕ : V → W is a G-module homomorphism, then <br>(1) Either ϕ is an isomorphism or ϕ = 0. (2) If V = W, then ϕ = λ · I for some λ ∈ C, I the identity map. </p><p>Proof. The first claim follows from the the fact that Ker&nbsp;ϕ and Im&nbsp;ϕ are invariant subspaces. For the second, since C is an algebraic closed field, ϕ must have an eigenvalue λ, i.e., for some λ ∈ C, ϕ − λI has a nonzero kernel.&nbsp;By (1), we must have ϕ − λI = 0 and the claim follows. </p><p>ꢀ</p><p>Proposition 1.9. For any representation V of a finite group G, there is a decomposition </p><p>V = V<sub style="top: 0.2604em;">1</sub><sup style="top: -0.4053em;">a </sup>⊕ · · · ⊕ V<sub style="top: 0.2936em;">k</sub><sup style="top: -0.4303em;">a </sup></p><p>1</p><p>k</p><p>,</p><p>where the V<sub style="top: 0.1363em;">i </sub>are distinct irreducible representations. The decomposition of V into a direct sum of the k factors is unique, as are the V<sub style="top: 0.1364em;">i </sub>that occur and their multiplicities a<sub style="top: 0.1364em;">i</sub>. </p><p>Proof. It follows from Schur’s lemma that if W is another representation of G, with a decomposition W = ⊕<sub style="top: 0.1363em;">j</sub>W<sup style="top: -0.5113em;">b </sup>and ϕ : V → W is a map of representations, then ϕ must map </p><p>j</p><p>j</p><p></p><ul style="display: flex;"><li style="flex:1">the factors V<sub style="top: 0.2714em;">i</sub><sup style="top: -0.4143em;">a </sup>into the factors W<sub style="top: 0.2714em;">j</sub><sup style="top: -0.5113em;">b </sup>for which V<sub style="top: 0.1364em;">i </sub></li><li style="flex:1">W . If&nbsp;we apply this to the identity </li></ul><p></p><p>j</p><p>ji</p><p>∼</p><p>=map of V to V , the stated uniqueness follows. </p><p>ꢀ</p><p>1.5. Construct new representations from old ones. </p><p>1.5.1. General construction.&nbsp;If V and W are representations, the direct sum V ⊕ W and the tensor product are also representations, via </p><p>g(v ⊕ w) = gv ⊕ gw, g(v ⊗ w) = gv ⊗ gw. </p><p>For a representation V , the nth tensor power V <sup style="top: -0.3299em;">⊗n </sup>is again a representation of G by this </p><p>V</p><p>rule, and the exterior power&nbsp;<sup style="top: -0.4189em;">n</sup>(V ) and symmetric power Symm<sup style="top: -0.3583em;">n</sup>(V ) are subrepresentations of it. <br>The dual V <sup style="top: -0.3299em;">∗ </sup>= Hom(V, C) of V is also a representation of G via </p><p>ρ<sup style="top: -0.3753em;">∗</sup>(g) = <sup style="top: -0.5405em;">t</sup>ρ(g<sup style="top: -0.3753em;">−1</sup>) : V <sup style="top: -0.3753em;">∗ </sup>→ V <sup style="top: -0.3753em;">∗</sup>. </p><p>Note under this definition, we have </p><p>hρ<sup style="top: -0.3754em;">∗</sup>(g)(v<sup style="top: -0.3754em;">∗</sup>), ρ(g)(v)i = hv<sup style="top: -0.3754em;">∗</sup>, vi, </p><p>where h, i is the natural pairing between V and V <sup style="top: -0.3299em;">∗</sup>. </p><p>1.5.2. Symmetric square and alternation square.&nbsp;Suppose that the representations V<sub style="top: 0.1363em;">1 </sub>and </p><p>V<sub style="top: 0.1363em;">2 </sub>are identical to the same representation V , so that V<sub style="top: 0.1363em;">1 </sub>⊗ V<sub style="top: 0.1363em;">2 </sub>= V ⊗ V . If (e<sub style="top: 0.1363em;">i</sub>) is a basis of V , let θ be the automorphism of V ⊗ V such that </p><p>θ(e<sub style="top: 0.1364em;">i </sub>⊗ e<sub style="top: 0.1364em;">j</sub>) = e<sub style="top: 0.1364em;">j </sub>⊗ e<sub style="top: 0.1364em;">i</sub>, for all (i, j). <br>It follows that θ(x ⊗ y) = y ⊗ x for all x, y&nbsp;∈ V , and θ is independent of the chosen basis (e<sub style="top: 0.1364em;">i</sub>). Moreover, θ<sup style="top: -0.3299em;">2 </sup>= 1.&nbsp;The space V ⊗ V then decomposes into a direct sum </p><p>2</p><p>^</p><p>V ⊗ V = Symm<sup style="top: -0.3753em;">2</sup>(V ) ⊕ (V ), </p><p>5</p><p>V</p><p>where Symm<sup style="top: -0.3583em;">2</sup>(V ) is the set of elements z ∈ V ⊗ V such that θ(z) = z and <sup style="top: -0.4189em;">2</sup>(V ) is the set of elements of z ∈ V ⊗ V such that θ(z) = −z. The elements (e<sub style="top: 0.1364em;">i </sub>⊗ e<sub style="top: 0.1364em;">j </sub>+ e<sub style="top: 0.1364em;">j </sub>⊗ e<sub style="top: 0.1364em;">i</sub>)<sub style="top: 0.1364em;">i≤j </sub>for a </p><p>V</p><p>basis of Symm<sup style="top: -0.3583em;">2</sup>(V ), and the elements (e<sub style="top: 0.1363em;">i </sub>⊗ e<sub style="top: 0.1363em;">j </sub>− e<sub style="top: 0.1363em;">j </sub>⊗ e<sub style="top: 0.1363em;">i</sub>)<sub style="top: 0.1363em;">i&lt;j </sub>for a basis of&nbsp;<sup style="top: -0.4189em;">2</sup>(V ). We have </p><p>2</p><p>^</p><p>dim Symm<sup style="top: -0.3754em;">2</sup>(V ) = n(n + 1)/2 dim (V ) = n(n − 1)/2 if dim(V ) = n. </p><p>1.6. Further remarks. </p><p>1.6.1. Complete reducibility. We saw that any representation of a finite group is a direct sum of irreducible representations.&nbsp;This property is called complete reducibility, or semisimplicity. We&nbsp;may show that, for continuous representations, any compact group has this property. Integration over the group with respect to an invariant measure on the group plays the role of averaging in the proof of the theorem.&nbsp;The additive group R, on the other hand, does not have this property. Let V = R<sup style="top: -0.3299em;">2</sup>, the representation of </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>1 a 0 1 </p><p>a → </p><p>leaves the x axis fixed, but there is no complementary subspace. <br>The complete reducibility may also fail if the vector space V is over a field of finite characteristic. </p><p>1.6.2. Representations of abelian groups. If V is a representation of the finite group G, abelian or not, each g ∈ G gives a map ρ(g) : V → V . But&nbsp;this map in general is not a G-module homomorphism: for general h ∈ G, we will have </p><p>g(h(v)) = h(g(v)). <br>Indeed, ρ(g) : V → V will be a G-linear for every ρ if and only if g is in the center Z(G) of G. In&nbsp;particular, if G is abelian, and V is an irreducible representation, then by Schur’s lemma every element g ∈ G acts on V by a scalar multiple of the identity.&nbsp;Every subspace of V is thus invariant, so that V must be one dimensional.&nbsp;The irreducible representations of an abelian group G are thus simply elements of the dual group, that is, homomorphisms </p><p>ρ : G → C<sup style="top: -0.3753em;">×</sup>. </p><p>1.6.3. Representations of S<sub style="top: 0.1363em;">3</sub>. We consider the simplest nonabelian group G = S<sub style="top: 0.1363em;">3</sub>. To&nbsp;begin with, we have two one-dimensional representations:&nbsp;the trivial representation, which we will denote U, and the alternating representation U<sup style="top: -0.3299em;">0</sup>, defined by </p><p>gv = sgn(g)v, </p><p>for g ∈ G, v ∈ V . Next,&nbsp;since G comes to us as a permutation group, we have a natural permutation representation, in which G acts on C<sup style="top: -0.3298em;">3 </sup>by permuting the coordinates. </p><p>Explicitly, if (e<sub style="top: 0.1363em;">1</sub>, e<sub style="top: 0.1363em;">2</sub>, e<sub style="top: 0.1363em;">3</sub>) is the standard basis, then g(e<sub style="top: 0.1363em;">i</sub>) = e<sub style="top: 0.185em;">g(i)</sub>, or equivalently, </p><p>g(z<sub style="top: 0.1364em;">1</sub>, z<sub style="top: 0.1364em;">2</sub>, z<sub style="top: 0.1364em;">2</sub>) = (z<sub style="top: 0.197em;">g</sub><sub style="top: -0.1891em;">−1</sub><sub style="top: 0.197em;">(1)</sub>, z<sub style="top: 0.197em;">g</sub><sub style="top: -0.1891em;">−1</sub><sub style="top: 0.197em;">(2)</sub>, z<sub style="top: 0.197em;">g</sub><sub style="top: -0.1891em;">−1</sub><sub style="top: 0.197em;">(3)</sub>). </p><p>This representation is not irreducible.&nbsp;The line spanned by the sum (1, 1, 1) of the basis vectors is invariant, with complementary subspace </p><p>V = {(z<sub style="top: 0.1363em;">1</sub>, z<sub style="top: 0.1363em;">2</sub>, z<sub style="top: 0.1363em;">3</sub>) ∈ C<sup style="top: -0.3753em;">3 </sup>: z<sub style="top: 0.1363em;">1 </sub>+ z<sub style="top: 0.1363em;">2 </sub>+ z<sub style="top: 0.1363em;">3 </sub>= 0}. </p><p>6</p><p>This two-dimensional representation V is easily seen to be irreducible, we call it the standard representation of S<sub style="top: 0.1363em;">3</sub>. <br>Now we describing an arbitrary representation of S<sub style="top: 0.1363em;">3</sub>. (Later&nbsp;we will develop the so called character theory, which is a wonderful tool for describing arbitrary representation of a group.)&nbsp;We have seen that the representation theory of a finite abelian group is virtually trivial, we start our analysis of an arbitrary representation W of S<sub style="top: 0.1364em;">3 </sub>by looking at the action of the abelian subgroup U<sub style="top: 0.1363em;">3 </sub>= Z/3 ⊂ S<sub style="top: 0.1363em;">3 </sub>on W. Let&nbsp;τ be any generator of </p><p>U<sub style="top: 0.1364em;">3</sub>, the space W is spanned by eigenvectors v<sub style="top: 0.1364em;">i </sub>for the action of τ, whose eigenvalues are of course all powers of a cube root of unity ω = e<sup style="top: -0.3299em;">2πi/3</sup>. Thus </p><p>W = ⊕V<sub style="top: 0.1363em;">i </sub></p><p>where V<sub style="top: 0.1363em;">i </sub>= Cv<sub style="top: 0.1363em;">i </sub>and τv<sub style="top: 0.1363em;">i </sub>= ω<sup style="top: -0.3299em;">α</sup><sup style="top: 0.1013em;">i </sup>v<sub style="top: 0.1363em;">i</sub>. <br>Next, we ask how the remaining elements of S<sub style="top: 0.1364em;">3 </sub>act on W in terms of this decomposition. <br>Let σ be any transposition, so that τ and σ together generate S<sub style="top: 0.1363em;">3</sub>, with the relation στσ = τ<sup style="top: -0.3299em;">2</sup>. Let v be an eigenvector of τ with eigenvalue ω<sup style="top: -0.3299em;">i</sup>, we have </p><p>τ(σ(v)) = σ(τ<sup style="top: -0.3753em;">2</sup>(v)) = σ(ω<sup style="top: -0.3753em;">2i </sup>· v) = ω<sup style="top: -0.3753em;">2i </sup>· σ(v). <br>Therefore, σ(v) is again an eigenvector for τ with eigenvalue ω<sup style="top: -0.3299em;">2i</sup>. </p><p>Lemma 1.10. Let σ = (12), τ = (123). Then&nbsp;the standard representation of S<sub style="top: 0.1363em;">3 </sub>has a </p><p>basis α = (ω, 1, ω<sup style="top: -0.3298em;">2</sup>), β = (1, ω, ω<sup style="top: -0.3298em;">2</sup>), with τα = ωα, τβ&nbsp;= ω<sup style="top: -0.3753em;">2</sup>β, σα&nbsp;= β, σβ&nbsp;= α. </p><p>Suppose we start with an eigenvector v for τ. If&nbsp;the eigenvalue of v is ω<sup style="top: -0.3299em;">i </sup>= 1, then σ(v) is an eigenvector with eigenvalue ω<sup style="top: -0.3299em;">2i </sup>= ω<sup style="top: -0.3299em;">i</sup>, and so is independent of v. Now&nbsp;v and σ(v) together span a two-dimensional subspace V <sup style="top: -0.3299em;">0 </sup>of W invariant under S<sub style="top: 0.1363em;">3</sub>. In&nbsp;fact, V <sup style="top: -0.3299em;">0 </sup>is isomorphic to the standard representation, which follows from the lemma.&nbsp;If, on the other hand, the eigenvalue of v is 1, then σ(v) may or may not be independent of v. If it is not, then v spans a one-dimensional subrepresentation of W, isomorphic to the trivial representation if σ(v) = v and to the alternating representation if σ(v) = −v. If σ(v) and v are independent, then v + σ(v) and v − σ(v) span one-dimensional representations of W isomorphic to the trivial representation and alternating representation respectively.&nbsp;Thus, we have the following proposition. </p><p>Proposition 1.11. For an arbitrary representation W of S<sub style="top: 0.1364em;">3</sub>, we can write </p><p>W = U<sup style="top: -0.3754em;">⊕a </sup>⊕ (U<sup style="top: -0.3754em;">0</sup>)<sup style="top: -0.3754em;">⊕b </sup>⊕ V <sup style="top: -0.3754em;">⊕c </sup></p><p>Moreover, c is the number of independent eigenvectors for τ with eigenvalue ω, a+c is the </p><p>.</p><p>multiplicity of 1 as an eigenvalue of σ, and b+c is the multoplicity of −1 as an eigenvalue of σ. </p><p>2. Character theory </p><p>2.1. The character of a representation.&nbsp;Let V be a vector space of dimension n having a basis (e<sub style="top: 0.1363em;">i</sub>). Let A be a linear map of V into itself with matrix (a<sub style="top: 0.1363em;">ij</sub>)<sub style="top: 0.1363em;">n×n</sub>. By the trace of A we mean the scalar </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    37 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us