ADVANCES IN GOLD-CARBON BOND FORMATION: MONO-, DI-, AND TRIAURATED ORGANOMETALLICS By JAMES E. HECKLER Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Dr. Thomas G. Gray Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ____________________________________________________James E. Heckler candidate for the _____________________________Doctor of Philosophy degree*. Carlos E. Crespo-Hernandez (Signed) __________________________________ (chair of the committee) Anthony J. Pearson __________________________________ __________________________________Genevieve Sauve __________________________________Horst von Recum __________________________________Thomas G. Gray (date) ____________________27 July 2015 * We also certify that written approval has been obtained for any proprietary material contained therein. Dedication To my family and best friends i Table of Contents List of Tables …………………………………………………………………………………….iii List of Figures ……………..………………………………………………………………….......v List of Schemes and Charts..…………………………………………………………………..…..x Acknowledgements ……………………………………………………………………….……..xii List of Symbols and Abbreviations ……………………………………………………….....…xiii Abstract ……………………………………………………………………………………..…..xxi Chapter 1. General Introduction ………………….......................................................1 1.1 Fundamental gold chemistry………………………………………………1 1.1.1 Relativistic effects and gold……………………………………………….2 1.1.2 Gold as a “relativistic” proton……………………………………………..4 1.1.3 Aurophilicity and the photophysics of molecular gold……………………7 1.1.4 Catalytic applications of gold(I)…………………………………………..9 1.1.5 Gold(I) and thioredoxin reductase……………………………………….10 1.2 Huisgen 1,3-dipolar cycloadditions……………………………………...12 1.2.1 Copper-catalyzed azide and alkyne cycloadditions (CuAAC)…………..14 1.2.1.1 Triazoles as robust, conjugated chemical linkers………………………..16 1.3 Proposed Work…………………………………………………………...18 1.4 Citations………………………………………………………………….22 Chapter 2. Geminally diaurated gold(I) aryls from arylboronic acids...………….…27 2.1 Introduction………………………………………………………………27 2.2 Results and Discussion…………………………………………………..32 2.3 Conclusions and Future Directions………………………………………36 2.4 Experimental……………………………………………………………..38 i ii 2.5 Citations………………………………………………………………….45 Chapter 3. Gold(I) triazolyls: organometallic synthesis in air and aqueous media …………….………………………………………………………49 3.1 Introduction……………………………………………………………....49 3.2 Results and Discussion…………………………………………………..52 3.3 Conclusions and Future Directions………………………………………62 3.4 Experimental……………………………………………………………..64 3.5 Citations………………………………………………………………….83 Chapter 4. Red-shifts upon metal binding: a di-gold(I)-substituted bithiophene ……………………………………………………..……..…86 4.1 Introduction………………………………………………………………86 4.2 Results and Discussion…………………………………………………..88 4.3 Conclusions and Future Directions………………………………………95 4.4 Experimental……………………………………………………………..96 4.5 Citations………………………………………………………………...100 Chapter 5. Thesis Summary and Future Directions………………………………...103 Appendix I. Crystallographic Data of Synthesized New Compounds...……………..105 Appendix II. NMR Spectral Data of Synthesized New Compounds…………………159 Appendix III. Absorption and Emission Spectra of Synthesized New Compounds…..197 Appendix IV. Cartesian Coordinates of Optimized Geometries (DFT)……………….204 Appendix V. Content Reproduction Licenses………………………………………...209 Bibliography …………………………………………………………………………………...215 ii iii List of Tables Table Description Page 2.1 Synthesized geminal diaurates and yields. 33 2.2 Bond lengths and calculated bond orders of geminal diaurates 1 and 6 35 and model compounds 1’, 6’ and 11’. 3.1 Screening experiments of copper catalysts for the Au-CuAAC 55 3.2 Results of the cycloadditions of gold alkynyls 1a (R1 = tert-butyl) or 56 1b (R1 = 1-naphthyl) with various azides under copper catalysis AI-I Crystallographic experimental details for geminal diaurates 1, 6, and 105 12 AI-II Crystallographic experimental details for geminal diaurates 7, 9, and 107 11 AI-III Selected geometric parameters of geminal diaurates 1, 6, and 12 (Å, º) 109 AI-IV Selected geometric parameters of geminal diaurates 7, 9, and 11 (Å, º) 126 AI-V Crystallographic experimental details for 1,4-disubstituted-5-IPrAu- 144 1,2,3-triazoles 6a and 9 AI-VI Selected geometric parameters of 1,4-disubstituted-5-gold-1,2,3- 146 triazoles 6a and 9 (Å, º) AI-VII Crystallographic experimental details for 5,5’-bis(Ph3PAu)-2,2’- 151 bithiophene 1. AI-VIII Selected geometric parameters of 5,5’-bis(Ph3PAu)-2,2’-bithiophene, 157 1 (Å, º) iii iv AIV-I Optimized Cartesian coordinates of geminally diaurated arene 1’. 204 AIV-II Optimized Cartesian coordinates of geminally diaurated arene 6’. 205 AIV-III Optimized Cartesian coordinates of geminally diaurated arene 11’. 206 AIV-IV Optimized Cartesian coordinates of geminally diaurated arene 12’. 207 AIV-V Optimized Cartesian coordinates of 5,5’-bis(Me3PAu)-2,2’- 208 bithiophene, 1’ iv v List of Figures Figure Description Page 2.1 ORTEP Structure of geminal diaurate 6 34 2.2 Partial Kohn–Sham orbital energy diagram of model geminal diaurate 36 6’ 3.1 ORTEP Structure of gold triazolyl 6a shown with 50% probability 58 ellipsoids and partial atom labelling schemes 3.2 Conflated absorption and emission spectra of 6a (top) and 6b (bottom) 59 in methylene chloride. 3.3 ORTEP Structure of gold triazolyl 9 shown with 50% probability 60 ellipsoids and partial atom labelling schemes. 4.1 ORTEP Structure of diaurated bithiophene 1 shown with 50% 91 probability ellipsoids and partial atom labelling schemes. 4.2 Conflated absorption and emission spectra of bithiophene (top), 5- 92 DBB (middle), and 1 (bottom) in chloroform. 4.3 Partial Kohn–Sham orbital energy level diagram of model diaurated 93 bithiophene complex 1′ 4.4 Mulliken population analysis of 1’ and selected orbitals. 94 1 AII-I H NMR spectrum of [(Ph3PAu)2(µ-Ph)][NTf2] in CDCl3 159 31 1 AII-II P{ H} NMR spectrum of [(Ph3PAu)2(µ-Ph)][NTf2] in CDCl3 160 1 AII-III H NMR spectrum of [(Ph3PAu)2(µ-(4-iPrOPh)][NTf2] in CDCl3 161 31 1 AII-IV P{ H} NMR spectrum of [(Ph3PAu)2(µ-(4-iPrOPh)][NTf2] in 162 CDCl3 v vi 1 AII-V H NMR spectrum of [(Ph3PAu)2(µ-(4-MeOPh)][NTf2] in CDCl3 163 31 1 AII-VI P{ H} NMR spectrum of [(Ph3PAu)2(µ-(4-MeOPh)][NTf2] in 164 CDCl3 1 AII-VII H NMR spectrum of [(Ph3PAu)2(µ-(3-NO2Ph)][NTf2] in CDCl3 165 31 1 AII-VIII P{ H} NMR spectrum of [(Ph3PAu)2(µ-(3-NO2Ph)][NTf2] in 166 CDCl3 1 AII-IX H NMR spectrum of [(Ph3PAu)2(µ-(4-FPh)][NTf2] in CDCl3 167 19 1 AII-X F{ H} NMR spectrum of [(Ph3PAu)2(µ-(4-FPh)][NTf2] in CDCl3 168 31 1 AII-XI P{ H} NMR spectrum of [(Ph3PAu)2(µ-(4-FPh)][NTf2] in CDCl3 169 31 1 AII-XII P{ H} NMR spectrum of [(Ph3PAu)2(µ-5-indolyl)][NTf2] in CDCl3 170 1 AII-XIII H NMR spectrum of [(Ph3PAu)2(µ-(benzothienyl)][NTf2] in CDCl3 171 31 1 AII-XIV P{ H} NMR spectrum of [(Ph3PAu)2(µ-(benzothienyl)][NTf2] in 172 CDCl3 1 AII-XV H NMR spectrum of [(Ph3PAu)2(µ-(4-tolyl)][NTf2] in CDCl3 173 31 1 AII-XVI P{ H} NMR spectrum of [(Ph3PAu)2(µ-(3-tolyl)][NTf2] in CDCl3 174 1 AII-XVII H NMR spectrum of [(Ph3PAu)2(µ-(2-tolyl)][NTf2] in CDCl3 175 31 1 AII-XVIII P{ H} NMR spectrum of [(Ph3PAu)2(µ-(2-tolyl)][NTf2] in CDCl3 176 1 AII-XIX H NMR spectrum of [(Ph3PAu)2(µ-(1-naphthyl))][NTf2] in CDCl3 177 vi vii 31 1 AII-XX P{ H} NMR spectrum of [(Ph3PAu)2(µ-1-(naphthyl))][NTf2] in 178 CDCl3 1 AII-XXI H NMR spectrum of [(Ph3PAu)2(µ-(4-tBuPh)][NTf2] in CDCl3 179 31 1 AII-XXII P{ H} NMR spectrum of [(Ph3PAu)2(µ-(4-tBuPh)][NTf2] in CDCl3 180 1 AII-XXIII H NMR spectrum of [(Ph3PAu)2(µ-(4-CF3Ph)][NTf2] in CDCl3 181 19 1 AII-XXIV F{ H} NMR spectrum of [(Ph3PAu)2(µ-(4-CF3Ph)][NTf2] in CDCl3 182 1 AII-XXV H NMR spectrum of 1-benzyl-4-tBu-5-IPrAu-1,2,3-triazole in C6D6 183 1 AII-XXVI H NMR spectrum of 1-octyl-4-tBu-5-IPrAu-1,2,3-triazole in C6D6 184 AII-XXVII 1H NMR spectrum of 1-methylthiophenyl-4-tBu-5-IPrAu-1,2,3- 185 triazole in C6D6 1 AII-XXVIII H NMR spectrum of 1-anisolyl-4-tBu-5-IPrAu-1,2,3-triazole in C6D6 186 AII-XXIX 1H NMR spectrum of 1-(4-methyl-7-methoxycoumarin)-4-tBu-5- 187 IPrAu-1,2,3-triazole in C6D6 AII-XXX 1H NMR spectrum of 1-(4-methyl-7-methoxycoumarin)-4-(1- 188 naphthyl)-5-IPrAu-1,2,3-triazole in C6D6 AII-XXXI 1H NMR spectrum of 1-(tosylated-deoxyribose)-4-tBu-5-IPrAu-1,2,3- 189 triazole in C6D6 1 AII-XXXII H NMR spectrum of IPrAu(tert-butylethynyl) in C6D6 190 1 AII-XXXIII H NMR spectrum of IPrAu(tert-butylethynyl) in CDCl3 191 1 AII-XXXIV H NMR spectrum of 5,5’-bis(B(pin))-2,2’-bithiophene in CDCl3 192 1 AII-XXXV H NMR spectrum of 5,5’-bis(Ph3PAu)-2,2’-bithiophene in CDCl3 193 vii viii 31 1 AII-XXXVI P{ H} NMR spectrum of 5,5’-bis(Ph3PAu)-2,2’-bithiophene in 194 CDCl3 31 1 AII-XXXVII P{ H} NMR spectrum of 1,3,5-tris(Ph3PAu)-4-phenyl-1,2,3- 194 triazolium triflide in CDCl3 31 1 AII-XXXVIII P{ H} NMR spectrum of 1,3,5-tris(Ph3PAu)-4-(1-naphthyl)-1,2,3- 196 triazolium triflide in CDCl3 AIII-I Conflated absorption and emission spectrum of [(Ph3PAu)2(µ- 197 Ph)][NTf2] 1 in methylene chloride at 298 K. AIII-II Conflated emission spectra of 1 and Ph3PAu(1-naphthyl) in methylene 197 chloride at 298 K. AIII-III Beer’s Law Plot of 4-bromo-7-methoxycoumarin in chloroform at 298 198 K. AIII-IV Conflated absorption and emission spectrum of 4-bromo-7- 198 methoxycoumarin in chloroform at 298 K. AIII-V Beer’s Law Plot of 4-azido-7-methoxycoumarin in chloroform at 298 199 K.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages252 Page
-
File Size-