Lecture #4, Matter/Energy Interactions, Emissions Spectra, Quantum Numbers

Lecture #4, Matter/Energy Interactions, Emissions Spectra, Quantum Numbers

Welcome to 3.091 Lecture 4 September 16, 2009 Matter/Energy Interactions: Atomic Spectra 3.091 Periodic Table Quiz 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Name Grade /10 Image by MIT OpenCourseWare. Rutherford-Geiger-Marsden experiment Image by MIT OpenCourseWare. Bohr Postulates for the Hydrogen Atom 1. Rutherford atom is correct 2. Classical EM theory not applicable to orbiting e- 3. Newtonian mechanics applicable to orbiting e- 4. Eelectron = Ekinetic + Epotential 5. e- energy quantized through its angular momentum: L = mvr = nh/2π, n = 1, 2, 3,… 6. Planck-Einstein relation applies to e- transitions: ΔE = Ef - Ei = hν = hc/λ c = νλ _ _ 24 1 18 Bohr magneton µΒ = eh/2me 9.274 015 4(31) X 10 J T 0.34 _ _ 27 1 19 Nuclear magneton µΝ = eh/2mp 5.050 786 6(17) X 10 J T 0.34 _ 2 3 20 Fine structure constant α = µ0ce /2h 7.297 353 08(33) X 10 0.045 21 Inverse fine structure constant 1/α 137.035 989 5(61) 0.045 _ 2 1 22 Rydberg constant R¥ = mecα /2h 10 973 731.534(13) m 0.0012 23 Rydberg constant in eV R¥ hc/{e} 13.605 698 1(40) eV 0.30 _ 10 24 Bohr radius a0 = a/4πR¥ 0.529 177 249(24) X 10 m 0.045 _ _ 4 2 1 25 Quantum of circulation h/2me 3.636 948 07(33) X 10 m s 0.089 _ 11 1 26 Electron specific charge -e/me -1.758 819 62(53) X 10 C kg 0.30 _ 12 27 Electron Compton wavelength λC = h/mec 2.426 310 58(22) X 10 m 0.089 _ 2 15 28 Electron classical radius re = α a0 2.817 940 92(38) X 10 m 0.13 _ _ 26 1 29 Electron magnetic moment` µe 928.477 01(31) X 10 J T 0.34 _ _ 3 30 Electron mag. moment anomaly ae = µe/µB 1 1.159 652 193(10) X 10 0.0086 31 Electron g-factor ge = 2(1 + ae) 2.002 319 304 386(20) 0.00001 _ 28 32 Muon mass mµ 1.883 532 7(11) X 10 kg 0.61 _ _ 33 Muon magnetic moment µµ 4.490 451 4(15) X 10 26 J T 1 0.33 _ 3 34 Muon mag. moment anomaly aµ = [µµ/eh/2mµ)] -1 1.165 923 0(84) X 10 7.2 35 Muon g-factor gµ = 2(1 + aµ) 2.002 331 846(17) 0.0084 _ _ 26 1 36 Proton magnetic moment µp 1.410 607 61(47) X 10 J T 0.34 _ _ 1 1 37 Proton gyromagnetic ratio γp 26 752.212 8(81) X 104 T s 0.30 _ _ 1 38 Neutron magnetic moment µn 0.966 237 07(40) X 10 26 J T 0.41 _ _ _ 39 Stefan-Boltzmann constant σ = ( π2/ 60)k4/h3c2 5.670 51(19) X 10 8 W m 2 K 4 34 _ 2 16 2 40 First radiation constant c1 = 2πhc 3.741 774 9(22) X 10 W m 0.60 41 Second radiation constant c2 = hc/k 0.014 387 69(12) m K 8.4 _ 42 Electron volt eV = (e/C)J = {e}J 1.602 177 33(49) X 10 19 J 0.30 _ 43 Atomic mass unit u 1.660 540 2(10) X 10 27 kg 0.59 44 Standard atmosphere atm 101 325 Pa exact _ 2 45 Standard acceleration of gravity gn 9.806 65 m s exact _ _ Notation : 1.602 177 33(49) X 10 19 C means (1.602 177 33 + (0.000 000 49) X 10 19 C _ _ _ _ _ _ _ _ C = A s F = (C/V) = m 2 kg 1 s4 A2 Pa = N m 2 = m 1 kg s _ 2 T = kg s 2 A 1 W = J s 1 = m2 kg s 3 _ _ _ _ _ _ _ _ _ Wb = V s = m2 kg s 2 A 1 Fm 1 = (C/V) m 1 = m 3 kg 1 s4 A2 T s = kg s 1 A 1 J T 1 = m2 A Image by MIT OpenCourseWare. PrismFigure 6.9 Spectrograph A.A. Ångström (1853) Image by MIT OpenCourseWare. Figure 6.9b Image by MIT OpenCourseWare. 1 IA IA 1.00794 -259.34 1 -252.87 1 0.0899 2.20 2 13.598 H 1s1 IIA Hydrogen IIA 6.941 9.012182 180.5 3 1287 4 1342 1 2471 2 0.534 1.8477 0.98 1.57 5.392 Li 9.322 Be [He]2s1 [He]2s2 Lithium Beryllium 22.989768 24.3050 97.72 11 650 12 883 1 1090 2 0.97 1.74 0.93 1.31 5.139 Na 7.646 Mg [Ne]3s1 [Ne]3s2 Sodium Magnesium Image by MIT OpenCourseWare. _ _ 24 1 18 Bohr magneton µΒ = eh/2me 9.274 015 4(31) X 10 J T 0.34 _ _ 27 1 19 Nuclear magneton µΝ = eh/2mp 5.050 786 6(17) X 10 J T 0.34 _ 2 3 20 Fine structure constant α = µ0ce /2h 7.297 353 08(33) X 10 0.045 21 Inverse fine structure constant 1/α 137.035 989 5(61) 0.045 _ 2 1 22 Rydberg constant R¥ = mecα /2h 10 973 731.534(13) m 0.0012 23 Rydberg constant in eV R¥ hc/{e} 13.605 698 1(40) eV 0.30 _ 10 24 Bohr radius a0 = a/4πR¥ 0.529 177 249(24) X 10 m 0.045 _ _ 4 2 1 25 Quantum of circulation h/2me 3.636 948 07(33) X 10 m s 0.089 _ 11 1 26 Electron specific charge -e/me -1.758 819 62(53) X 10 C kg 0.30 _ 12 27 Electron Compton wavelength λC = h/mec 2.426 310 58(22) X 10 m 0.089 _ 2 15 28 Electron classical radius re = α a0 2.817 940 92(38) X 10 m 0.13 _ _ 26 1 29 Electron magnetic moment` µe 928.477 01(31) X 10 J T 0.34 _ _ 3 30 Electron mag. moment anomaly ae = µe/µB 1 1.159 652 193(10) X 10 0.0086 31 Electron g-factor ge = 2(1 + ae) 2.002 319 304 386(20) 0.00001 _ 28 32 Muon mass mµ 1.883 532 7(11) X 10 kg 0.61 _ _ 33 Muon magnetic moment µµ 4.490 451 4(15) X 10 26 J T 1 0.33 _ 3 34 Muon mag. moment anomaly aµ = [µµ/eh/2mµ)] -1 1.165 923 0(84) X 10 7.2 35 Muon g-factor gµ = 2(1 + aµ) 2.002 331 846(17) 0.0084 _ _ 26 1 36 Proton magnetic moment µp 1.410 607 61(47) X 10 J T 0.34 _ _ 1 1 37 Proton gyromagnetic ratio γp 26 752.212 8(81) X 104 T s 0.30 _ _ 1 38 Neutron magnetic moment µn 0.966 237 07(40) X 10 26 J T 0.41 _ _ _ 39 Stefan-Boltzmann constant σ = ( π2/ 60)k4/h3c2 5.670 51(19) X 10 8 W m 2 K 4 34 _ 2 16 2 40 First radiation constant c1 = 2πhc 3.741 774 9(22) X 10 W m 0.60 41 Second radiation constant c2 = hc/k 0.014 387 69(12) m K 8.4 _ 42 Electron volt eV = (e/C)J = {e}J 1.602 177 33(49) X 10 19 J 0.30 _ 43 Atomic mass unit u 1.660 540 2(10) X 10 27 kg 0.59 44 Standard atmosphere atm 101 325 Pa exact _ 2 45 Standard acceleration of gravity gn 9.806 65 m s exact _ _ Notation : 1.602 177 33(49) X 10 19 C means (1.602 177 33 + (0.000 000 49) X 10 19 C _ _ _ _ _ _ _ _ C = A s F = (C/V) = m 2 kg 1 s4 A2 Pa = N m 2 = m 1 kg s _ 2 T = kg s 2 A 1 W = J s 1 = m2 kg s 3 _ _ _ _ _ _ _ _ _ Wb = V s = m2 kg s 2 A 1 Fm 1 = (C/V) m 1 = m 3 kg 1 s4 A2 T s = kg s 1 A 1 J T 1 = m2 A Image by MIT OpenCourseWare. Figure 6.11a Electronic emission transition Higher-Energy Orbit e- Photon e- Lower-Energy Orbit Image by MIT OpenCourseWare. Bohr Postulates for the Hydrogen Atom 1. Rutherford atom is correct 2. Classical EM theory not applicable to orbiting e- 3. Newtonian mechanics applicable to orbiting e- 4. Eelectron = Ekinetic + Epotential 5. e- energy quantized through its angular momentum: L = mvr = nh/2π, n = 1, 2, 3,… - 6.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us