Finite Element Methods for the Simulation of Incompressible Flows

Finite Element Methods for the Simulation of Incompressible Flows

Weierstrass Institute for Applied Analysis and Stochastics Finite Element Methods for the Simulation of Incompressible Flows Volker John Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 Outline of the Lectures 1 The Navier–Stokes Equations as Model for Incompressible Flows 2 Function Spaces For Linear Saddle Point Problems 3 The Stokes Equations 4 The Oseen Equations 5 The Stationary Navier–Stokes Equations 6 The Time-Dependent Navier–Stokes Equations – Laminar Flows Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 2 (151) 1 A Model for Incompressible Flows • conservation laws ◦ conservation of linear momentum ◦ conservation of mass • flow variables ◦ r(t;x) : density [kg=m3] ◦ v(t;x) : velocity [m=s] ◦ P(t;x) : pressure [N=m2] assumed to be sufficiently smooth in • W ⊂ R3 • [0;T] Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 3 (151) 1 Conservation of Mass • change of fluid in arbitrary volume V ¶ Z Z Z − r dx = rv · n ds = ∇ · (rv) dx ¶t V ¶V V | {z } | {z } mass transport through bdry • V arbitrary =) continuity equation rt + ∇ · (rv) = 0 • incompressibility( r = const) ∇ · v = 0 Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 4 (151) • acceleration: using first order Taylor series expansion in time (board) dv (t;x) = ¶ v(t;x) + (v(t;x) · ∇)v(t;x) dt t movement of a particle 1 Newton’s Second Law of Motion • Newton’s second law of motion net force = mass × acceleration Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 5 (151) 1 Newton’s Second Law of Motion • Newton’s second law of motion net force = mass × acceleration • acceleration: using first order Taylor series expansion in time (board) dv (t;x) = ¶ v(t;x) + (v(t;x) · ∇)v(t;x) dt t movement of a particle Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 5 (151) • principle of Cauchy: internal contact forces depend (geometrically) only on the orientation of the surface t = t(n) n – unit normal vector of the surface pointing outwards of V 1 Newton’s Second Law of Motion • acting forces on an arbitrary volume V : sum of external (body) forces ◦ gravity and internal (molecular) forces ◦ pressure ◦ viscous drag that a ’fluid element’ exerts on the ’adjacent element’ ◦ contact forces: act only on surface of ’fluid element’ Z Z F(t;x) dx + t(t;s) ds V ¶V t [N=m2] – Cauchy stress vector Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 6 (151) 1 Newton’s Second Law of Motion • acting forces on an arbitrary volume V : sum of external (body) forces ◦ gravity and internal (molecular) forces ◦ pressure ◦ viscous drag that a ’fluid element’ exerts on the ’adjacent element’ ◦ contact forces: act only on surface of ’fluid element’ Z Z F(t;x) dx + t(t;s) ds V ¶V t [N=m2] – Cauchy stress vector • principle of Cauchy: internal contact forces depend (geometrically) only on the orientation of the surface t = t(n) n – unit normal vector of the surface pointing outwards of V Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 6 (151) 1 Newton’s Second Law of Motion • it can be shown: conservation of linear momentum results in linear dependency on n t = Sn S(t;x)[N=m2] – stress tensor, dimension 3 × 3 • divergence theorem Z Z t(t;s) ds = ∇ · S(t;x) dx ¶V V • momentum equation r (vt + (v · ∇)v) = ∇ · S + F 8 t 2 (0;T]; x 2 W Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 7 (151) 1 Newton’s Second Law of Motion • model for the stress tensor ◦ torque Z Z M0 = r × F dx + r × (Sn) ds [N m] V ¶V T at equilibrium is zero =) symmetry S = S ◦ decomposition S = V + PI V [N=m2] – viscous stress tensor ◦ pressure P acts only normal to the surface, directed into V Z Z Z − Pn ds = − ∇P dx = − ∇ · (PI) dx ¶V V V Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 8 (151) 1 Newton’s Second Law of Motion • model for the stress tensor (cont.) ◦ viscous stress tensor − friction between fluid particles can only occur if the particles move with different velocities − viscous stress tensor depends on gradient of velocity − because of symmetry: on symmetric part of the gradient: velocity deformation tensor ∇v + (∇v)T (v) = D 2 − velocity not too large: dependency is linear (Newtonian fluids) 2m = 2m (v) + z − (∇ · v) V D 3 I m [kg=(m s)] – dynamic or shear viscosity z [kg=(m s)] – second order viscosity Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 9 (151) • incompressible flows: incompressible Navier–Stokes equations P F ¶t v − 2n∇ · D(v) + (v · ∇)v + ∇ = in (0;T] × W; r0 r0 ∇ · v = 0 in (0;T] × W 1 Navier–Stokes Equations • general Navier–Stokes equations r (¶t v + (v · ∇)v) 2m −2∇ · (mD(v)) − ∇ · z − 3 ∇ · vI + ∇P = F in (0;T] × W; rt + ∇ · (rv) = 0 in (0;T] × W Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 10 (151) 1 Navier–Stokes Equations • general Navier–Stokes equations r (¶t v + (v · ∇)v) 2m −2∇ · (mD(v)) − ∇ · z − 3 ∇ · vI + ∇P = F in (0;T] × W; rt + ∇ · (rv) = 0 in (0;T] × W • incompressible flows: incompressible Navier–Stokes equations P F ¶t v − 2n∇ · D(v) + (v · ∇)v + ∇ = in (0;T] × W; r0 r0 ∇ · v = 0 in (0;T] × W Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 10 (151) 1 Navier–Stokes Equations • Claude Louis Marie Henri Navier (1785 – 1836) George Gabriel Stokes (1819 – 1903) Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 11 (151) 1 Dimensionless Incompressible Navier–Stokes Equations • dimensionless equations needed for (numerical) analysis and numerical simulations • reference quantities of flow problem ◦ L [m] – a characteristic length scale ◦ U [m=s] – a characteristic velocity scale ◦ T ∗ [s] – a characteristic time scale • transform of variables x0 v t0 x = ; u = ; t = L U T ∗ • rescaling L 2n P L ∗ ¶t u − ∇ · D(u) + (u · ∇)u + ∇ 2 = 2 F in (0;T] × W; UT UL r0U r0U ∇ · u = 0 in (0;T] × W; Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 12 (151) 1 Dimensionless Incompressible Navier–Stokes Equations • defining P UL L L p = 2 ; Re = ; St = ∗ ; f = 2 F r0U n UT r0U p – new pressure Re – Reynolds number St – Strouhal number f – new right hand side • result 2 St¶ u − ∇ · (u) + (u · ∇)u + ∇p = f in (0;T] × W; t Re D ∇ · u = 0 in (0;T] × W • generally T ∗ = L=U =) St = 1 Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 13 (151) 1 Dimensionless Incompressible Navier–Stokes Equations • dimensionless Navier–Stokes equations ◦ conservation of linear momentum ◦ conservation of mass −1 T ut − 2Re ∇ · D(u) + ∇ · (uu ) + ∇p = f in (0;T] × W ∇ · u = 0 in [0;T] × W u(0;x) = u0 in W + boundary conditions • given: • to compute: d ◦ W ⊂ R ;d 2 f2;3g: domain ◦ velocity u, with ◦ T : final time ∇u + ∇uT ◦ u : initial velocity (u) = ; 0 D 2 ◦ boundary conditions velocity deformation tensor ◦ pressure p • parameter: Reynolds number Re Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 14 (151) 1 The Reynolds Number • Reynolds number LU Re = n convective forces = viscous forces Osborne Reynolds (1842 – 1912) • rough classification of flows: ◦ Re small: steady-state flow field (if data do not depend on time) ◦ Re larger: laminar time-dependent flow field ◦ Re very large: turbulent flows Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 15 (151) • alternative expression of viscous term (due to ∇ · u = 0) 2∇ · D(u) = Du • alternative expression of convective term (due to ∇ · u = 0) (u · ∇)u = ∇ · (uuT ) 1 Dimensionless Incompressible Navier–Stokes Equations • simplified form (for mathematics) ¶t u − 2n∇ · D(u) + (u · ∇)u + ∇p = f in (0;T] × W; ∇ · u = 0 in (0;T] × W n = Re−1 – dimensionless viscosity Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02. – 02.03.2012 · Page 16 (151) 1 Dimensionless Incompressible Navier–Stokes Equations • simplified form (for mathematics) ¶t u − 2n∇ · D(u) + (u · ∇)u + ∇p = f in (0;T] × W; ∇ · u = 0 in (0;T] × W n = Re−1 – dimensionless viscosity • alternative expression of viscous term (due to ∇ · u = 0) 2∇ · D(u) = Du • alternative expression of convective term (due to ∇ · u = 0) (u · ∇)u = ∇ · (uuT ) Finite Element Methods for the Simulation of Incompressible Flows · Course at Universidad Autonoma de Madrid, 27.02.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    204 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us