4. Convex Optimization Problems

4. Convex Optimization Problems

<p>Convex Optimization — Boyd &amp; Vandenberghe </p><p>4. Convex optimization problems </p><p>• optimization problem in standard form • convex optimization problems • quasiconvex optimization • linear optimization • quadratic optimization • geometric programming • generalized inequality constraints • semidefinite programming • vector optimization </p><p>4–1 </p><p>Optimization problem in standard form </p><p>minimize f<sub style="top: 0.258em;">0</sub>(x) </p><p>subject to&nbsp;f<sub style="top: 0.2588em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m h<sub style="top: 0.2588em;">i</sub>(x) = 0, i&nbsp;= 1, . . . , p </p><p>• x ∈ R<sup style="top: -0.771em;">n </sup>is the optimization variable • f<sub style="top: 0.258em;">0 </sub>: R<sup style="top: -0.771em;">n </sup>→ R is the objective or cost function • f<sub style="top: 0.258em;">i </sub>: R<sup style="top: -0.771em;">n </sup>→ R, i = 1, . . . , m, are the inequality constraint functions • h<sub style="top: 0.2588em;">i </sub>: R<sup style="top: -0.7702em;">n </sup>→ R are the equality constraint functions </p><p>optimal value: </p><p>p<sup style="top: -0.711em;">⋆ </sup>= inf{f<sub style="top: 0.2588em;">0</sub>(x) | f<sub style="top: 0.2588em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m,&nbsp;h<sub style="top: 0.2588em;">i</sub>(x) = 0, i&nbsp;= 1, . . . , p} </p><p>• p<sup style="top: -0.6247em;">⋆ </sup>= ∞ if problem is infeasible (no x satisfies the constraints) • p<sup style="top: -0.6247em;">⋆ </sup>= −∞ if problem is unbounded below </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–2 </li></ul><p></p><p>Optimal and locally optimal points </p><p>x is feasible if x ∈ dom f<sub style="top: 0.2588em;">0 </sub>and it satisfies the constraints a feasible x is optimal if f<sub style="top: 0.258em;">0</sub>(x) = p<sup style="top: -0.6247em;">⋆</sup>; X<sub style="top: 0.258em;">opt </sub>is the set of optimal points x is locally optimal if there is an R &gt; 0 such that x is optimal for </p><p>minimize (over z) f<sub style="top: 0.2588em;">0</sub>(z) subject to </p><p>f<sub style="top: 0.2587em;">i</sub>(z) ≤ 0, i&nbsp;= 1, . . . , m,&nbsp;h<sub style="top: 0.2587em;">i</sub>(z) = 0, i&nbsp;= 1, . . . , p </p><p>kz − xk<sub style="top: 0.2588em;">2 </sub>≤ R </p><p>examples (with n = 1, m = p = 0) <br>• f<sub style="top: 0.258em;">0</sub>(x) = 1/x, dom f<sub style="top: 0.258em;">0 </sub>= R<sub style="top: 0.258em;">++</sub>: p<sup style="top: -0.6255em;">⋆ </sup>= 0, no optimal point </p><p>• f<sub style="top: 0.2587em;">0</sub>(x) = − log x, dom f<sub style="top: 0.2587em;">0 </sub>= R<sub style="top: 0.2587em;">++</sub>: p<sup style="top: -0.6248em;">⋆ </sup>= −∞ • f<sub style="top: 0.258em;">0</sub>(x) = x log x, dom f<sub style="top: 0.258em;">0 </sub>= R<sub style="top: 0.258em;">++</sub>: p<sup style="top: -0.6248em;">⋆ </sup>= −1/e, x = 1/e is optimal </p><p>• f<sub style="top: 0.2587em;">0</sub>(x) = x<sup style="top: -0.6248em;">3 </sup>− 3x, p<sup style="top: -0.6248em;">⋆ </sup>= −∞, local optimum at x = 1 </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–3 </li></ul><p></p><p>Implicit constraints </p><p>the standard form optimization problem has an implicit constraint </p><p>pm</p><p></p><ul style="display: flex;"><li style="flex:1">\</li><li style="flex:1">\</li></ul><p></p><p>x ∈ D = dom f<sub style="top: 0.258em;">i </sub>∩ </p><p>dom h<sub style="top: 0.258em;">i</sub>, </p><p></p><ul style="display: flex;"><li style="flex:1">i=0 </li><li style="flex:1">i=1 </li></ul><p></p><p>• we call D the domain of the problem • the constraints f<sub style="top: 0.258em;">i</sub>(x) ≤ 0, h<sub style="top: 0.258em;">i</sub>(x) = 0 are the explicit constraints • a problem is unconstrained if it has no explicit constraints (m = p = 0) </p><p>example: </p><p>P</p><p>k</p><p>minimize f<sub style="top: 0.258em;">0</sub>(x) = − <sub style="top: 0.516em;">i=1 </sub>log(b<sub style="top: 0.258em;">i </sub>− a<sup style="top: -0.6255em;">T</sup><sub style="top: 0.447em;">i </sub>x) </p><p>is an unconstrained problem with implicit constraints a<sup style="top: -0.6247em;">T</sup><sub style="top: 0.447em;">i </sub>x &lt; b<sub style="top: 0.258em;">i </sub></p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–4 </li></ul><p></p><p>Feasibility problem </p><p>find </p><p>xsubject to&nbsp;f<sub style="top: 0.258em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m h<sub style="top: 0.258em;">i</sub>(x) = 0, i&nbsp;= 1, . . . , p </p><p>can be considered a special case of the general problem with f<sub style="top: 0.258em;">0</sub>(x) = 0: minimize 0 </p><p>subject to&nbsp;f<sub style="top: 0.2588em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m h<sub style="top: 0.258em;">i</sub>(x) = 0, i&nbsp;= 1, . . . , p </p><p>• p<sup style="top: -0.6247em;">⋆ </sup>= 0 if constraints are feasible; any feasible x is optimal • p<sup style="top: -0.6247em;">⋆ </sup>= ∞ if constraints are infeasible </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–5 </li></ul><p></p><p>Convex optimization problem </p><p>standard form convex optimization problem </p><p>minimize f<sub style="top: 0.258em;">0</sub>(x) </p><p>subject to&nbsp;f<sub style="top: 0.258em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m a<sup style="top: -0.6247em;">T</sup><sub style="top: 0.447em;">i </sub>x = b<sub style="top: 0.258em;">i</sub>, i&nbsp;= 1, . . . , p </p><p>• f<sub style="top: 0.258em;">0</sub>, f<sub style="top: 0.258em;">1</sub>, . . . , f<sub style="top: 0.258em;">m </sub>are convex; equality constraints are affine • problem is quasiconvex if f<sub style="top: 0.2588em;">0 </sub>is quasiconvex (and f<sub style="top: 0.2588em;">1</sub>, . . . , f<sub style="top: 0.2588em;">m </sub>convex) </p><p>often written as minimize f<sub style="top: 0.258em;">0</sub>(x) </p><p>subject to&nbsp;f<sub style="top: 0.258em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m <br>Ax = b </p><p>important property: feasible set of a convex optimization problem is convex </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–6 </li></ul><p></p><p>example </p><p>minimize f<sub style="top: 0.2587em;">0</sub>(x) = x<sup style="top: -0.6248em;">2</sup><sub style="top: 0.4267em;">1 </sub>+ x<sub style="top: 0.4267em;">2</sub><sup style="top: -0.6248em;">2 </sup>subject to&nbsp;f<sub style="top: 0.2588em;">1</sub>(x) = x<sub style="top: 0.2588em;">1</sub>/(1 + x<sup style="top: -0.6248em;">2</sup><sub style="top: 0.4267em;">2</sub>) ≤ 0 </p><p>h<sub style="top: 0.258em;">1</sub>(x) = (x<sub style="top: 0.258em;">1 </sub>+ x<sub style="top: 0.258em;">2</sub>)<sup style="top: -0.6255em;">2 </sup>= 0 </p><p>• f<sub style="top: 0.258em;">0 </sub>is convex; feasible set {(x<sub style="top: 0.258em;">1</sub>, x<sub style="top: 0.258em;">2</sub>) | x<sub style="top: 0.258em;">1 </sub>= −x<sub style="top: 0.258em;">2 </sub>≤ 0} is convex • not a convex problem (according to our definition): f<sub style="top: 0.258em;">1 </sub>is not convex, h<sub style="top: 0.258em;">1 </sub>is not affine </p><p>• equivalent (but not identical) to the convex problem minimize x<sup style="top: -0.6248em;">2</sup><sub style="top: 0.426em;">1 </sub>+ x<sup style="top: -0.6248em;">2</sup><sub style="top: 0.426em;">2 </sub>subject to&nbsp;x<sub style="top: 0.258em;">1 </sub>≤ 0 </p><p>x<sub style="top: 0.258em;">1 </sub>+ x<sub style="top: 0.258em;">2 </sub>= 0 </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–7 </li></ul><p></p><p>Local and global optima </p><p>any locally optimal point of a convex problem is (globally) optimal proof: suppose x is locally optimal, but there exists a feasible y with </p><p>f<sub style="top: 0.2588em;">0</sub>(y) &lt; f<sub style="top: 0.2588em;">0</sub>(x) </p><p>x locally optimal means there is an R &gt; 0 such that </p><p>z feasible, kz − xk<sub style="top: 0.258em;">2 </sub>≤ R =⇒ f<sub style="top: 0.258em;">0</sub>(z) ≥ f<sub style="top: 0.258em;">0</sub>(x) consider z = θy + (1 − θ)x with θ = R/(2ky − xk<sub style="top: 0.258em;">2</sub>) <br>• ky − xk<sub style="top: 0.2588em;">2 </sub>&gt; R, so 0 &lt; θ &lt; 1/2 </p><p>• z is a convex combination of two feasible points, hence also feasible </p><p>• kz − xk<sub style="top: 0.258em;">2 </sub>= R/2 and </p><p>f<sub style="top: 0.258em;">0</sub>(z) ≤ θf<sub style="top: 0.258em;">0</sub>(y) + (1 − θ)f<sub style="top: 0.258em;">0</sub>(x) &lt; f<sub style="top: 0.258em;">0</sub>(x) </p><p>which contradicts our assumption that x is locally optimal </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–8 </li></ul><p></p><p>Optimality criterion for differentiable f<sub style="top: 0.3097em;">0 </sub></p><p>x is optimal if and only if it is feasible and <br>∇f<sub style="top: 0.2588em;">0</sub>(x)<sup style="top: -0.711em;">T </sup>(y − x) ≥ 0 for all feasible y </p><p>−∇f<sub style="top: 0.2063em;">0</sub>(x) </p><p>x<br>X</p><p>if nonzero, ∇f<sub style="top: 0.258em;">0</sub>(x) defines a supporting hyperplane to feasible set X at x </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–9 </li></ul><p></p><p>• unconstrained problem: x is optimal if and only if </p><p>x ∈ dom f<sub style="top: 0.2588em;">0</sub>, </p><p>∇f<sub style="top: 0.2588em;">0</sub>(x) = 0 </p><p>• equality constrained problem </p><p>minimize f<sub style="top: 0.258em;">0</sub>(x) subject to&nbsp;Ax = b x is optimal if and only if there exists a ν such that </p><p>x ∈ dom f<sub style="top: 0.2588em;">0</sub>, </p><p>• minimization over nonnegative orthant </p><p>minimize f<sub style="top: 0.258em;">0</sub>(x) subject to&nbsp;x ꢀ 0 </p><p>Ax = b, </p><p>∇f<sub style="top: 0.2588em;">0</sub>(x) + A<sup style="top: -0.7103em;">T </sup>ν = 0 </p><p>x is optimal if and only if </p><p>ꢀ</p><p>∇f<sub style="top: 0.2588em;">0</sub>(x)<sub style="top: 0.2588em;">i </sub>≥ 0 x<sub style="top: 0.2588em;">i </sub>= 0 </p><p></p><ul style="display: flex;"><li style="flex:1">x ∈ dom f<sub style="top: 0.258em;">0</sub>, </li><li style="flex:1">x ꢀ 0, </li></ul><p></p><p>∇f<sub style="top: 0.2588em;">0</sub>(x)<sub style="top: 0.2588em;">i </sub>= 0&nbsp;x<sub style="top: 0.2588em;">i </sub>&gt; 0 </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–10 </li></ul><p></p><p>Equivalent convex problems </p><p>two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa </p><p>some common transformations that preserve convexity: </p><p>• eliminating equality constraints </p><p>minimize f<sub style="top: 0.2588em;">0</sub>(x) </p><p>subject to&nbsp;f<sub style="top: 0.258em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m <br>Ax = b </p><p>is equivalent to minimize (over z) f<sub style="top: 0.2588em;">0</sub>(Fz + x<sub style="top: 0.2588em;">0</sub>) subject to </p><p>f<sub style="top: 0.258em;">i</sub>(Fz + x<sub style="top: 0.258em;">0</sub>) ≤ 0, i&nbsp;= 1, . . . , m </p><p>where F and x<sub style="top: 0.258em;">0 </sub>are such that </p><p>Ax = b ⇐⇒ x = Fz + x<sub style="top: 0.2588em;">0 </sub>for some z </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–11 </li></ul><p></p><p>• introducing equality constraints </p><p>minimize f<sub style="top: 0.258em;">0</sub>(A<sub style="top: 0.258em;">0</sub>x + b<sub style="top: 0.258em;">0</sub>) </p><p>subject to&nbsp;f<sub style="top: 0.258em;">i</sub>(A<sub style="top: 0.258em;">i</sub>x + b<sub style="top: 0.258em;">i</sub>) ≤ 0, i&nbsp;= 1, . . . , m </p><p>is equivalent to minimize (over x, y<sub style="top: 0.258em;">i</sub>) f<sub style="top: 0.258em;">0</sub>(y<sub style="top: 0.258em;">0</sub>) subject to </p><p>f<sub style="top: 0.2588em;">i</sub>(y<sub style="top: 0.2588em;">i</sub>) ≤ 0, i&nbsp;= 1, . . . , m y<sub style="top: 0.2588em;">i </sub>= A<sub style="top: 0.2588em;">i</sub>x + b<sub style="top: 0.2588em;">i</sub>, i&nbsp;= 0, 1, . . . , m </p><p>• introducing slack variables for linear inequalities </p><p>minimize f<sub style="top: 0.2588em;">0</sub>(x) </p><p>subject to&nbsp;a<sup style="top: -0.6255em;">T</sup><sub style="top: 0.447em;">i </sub>x ≤ b<sub style="top: 0.258em;">i</sub>, i&nbsp;= 1, . . . , m </p><p>is equivalent to minimize (over x, s) f<sub style="top: 0.258em;">0</sub>(x) subject to </p><p>a<sup style="top: -0.6247em;">T</sup><sub style="top: 0.447em;">i </sub>x + s<sub style="top: 0.258em;">i </sub>= b<sub style="top: 0.258em;">i</sub>, i&nbsp;= 1, . . . , m s<sub style="top: 0.2588em;">i </sub>≥ 0, i&nbsp;= 1, . . . m </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–12 </li></ul><p></p><p>• epigraph form: standard form convex problem is equivalent to minimize (over x, t) t subject to </p><p>f<sub style="top: 0.258em;">0</sub>(x) − t ≤ 0 </p><p>f<sub style="top: 0.258em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m Ax = b </p><p>• minimizing over some variables </p><p>minimize f<sub style="top: 0.258em;">0</sub>(x<sub style="top: 0.258em;">1</sub>, x<sub style="top: 0.258em;">2</sub>) </p><p>subject to&nbsp;f<sub style="top: 0.258em;">i</sub>(x<sub style="top: 0.258em;">1</sub>) ≤ 0, i&nbsp;= 1, . . . , m </p><p>is equivalent to </p><p>˜</p><p>minimize f<sub style="top: 0.258em;">0</sub>(x<sub style="top: 0.258em;">1</sub>) </p><p>subject to&nbsp;f<sub style="top: 0.258em;">i</sub>(x<sub style="top: 0.258em;">1</sub>) ≤ 0, i&nbsp;= 1, . . . , m </p><p>˜where f<sub style="top: 0.258em;">0</sub>(x<sub style="top: 0.258em;">1</sub>) = inf<sub style="top: 0.258em;">x </sub>f<sub style="top: 0.258em;">0</sub>(x<sub style="top: 0.258em;">1</sub>, x<sub style="top: 0.258em;">2</sub>) </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–13 </li></ul><p></p><p>Quasiconvex optimization </p><p>minimize f<sub style="top: 0.258em;">0</sub>(x) </p><p>subject to&nbsp;f<sub style="top: 0.2588em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m <br>Ax = b </p><p>with f<sub style="top: 0.258em;">0 </sub>: R<sup style="top: -0.771em;">n </sup>→ R quasiconvex, f<sub style="top: 0.258em;">1</sub>, . . . , f<sub style="top: 0.258em;">m </sub>convex can have locally optimal points that are not (globally) optimal </p><p>(x, f<sub style="top: 0.2063em;">0</sub>(x)) </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–14 </li></ul><p></p><p>convex representation of sublevel sets of f<sub style="top: 0.258em;">0 </sub></p><p>if f<sub style="top: 0.2588em;">0 </sub>is quasiconvex, there exists a family of functions φ<sub style="top: 0.2588em;">t </sub>such that: <br>• φ<sub style="top: 0.258em;">t</sub>(x) is convex in x for fixed t • t-sublevel set of f<sub style="top: 0.258em;">0 </sub>is 0-sublevel set of φ<sub style="top: 0.258em;">t</sub>, i.e., </p><p>f<sub style="top: 0.258em;">0</sub>(x) ≤ t ⇐⇒ φ<sub style="top: 0.258em;">t</sub>(x) ≤ 0 </p><p>example </p><p>p(x) f<sub style="top: 0.258em;">0</sub>(x) = q(x) </p><p>with p convex, q concave, and p(x) ≥ 0, q(x) &gt; 0 on dom f<sub style="top: 0.258em;">0 </sub>can take φ<sub style="top: 0.258em;">t</sub>(x) = p(x) − tq(x): <br>• for t ≥ 0, φ<sub style="top: 0.258em;">t </sub>convex in x • p(x)/q(x) ≤ t if and only if φ<sub style="top: 0.2588em;">t</sub>(x) ≤ 0 </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–15 </li></ul><p></p><p>quasiconvex optimization via convex feasibility problems </p><p>φ<sub style="top: 0.2587em;">t</sub>(x) ≤ 0, f<sub style="top: 0.2587em;">i</sub>(x) ≤ 0, i&nbsp;= 1, . . . , m,&nbsp;Ax = b </p><p>(1) <br>• for fixed t, a convex feasibility problem in x • if feasible, we can conclude that t ≥ p<sup style="top: -0.6247em;">⋆</sup>; if infeasible, t ≤ p<sup style="top: -0.6247em;">⋆ </sup></p><p>Bisection method for quasiconvex optimization </p><p>given l ≤ p<sup style="top: -0.6217em;">⋆</sup>, u ≥ p<sup style="top: -0.6217em;">⋆</sup>, tolerance ǫ &gt; 0. </p><p>repeat </p><p>1. t := (l + u)/2. </p><p>2. Solve the convex feasibility problem (1). 3. if (1) is feasible, u := t; else l := t. </p><p>until u − l ≤ ǫ. </p><p>requires exactly ⌈log<sub style="top: 0.4208em;">2</sub>((u − l)/ǫ)⌉ iterations (where u, l are initial values) </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–16 </li></ul><p></p><p>Linear program (LP) </p><p>minimize c<sup style="top: -0.6247em;">T </sup>x + d subject to&nbsp;Gx ꢁ h </p><p>Ax = b </p><p>• convex problem with affine objective and constraint functions • feasible set is a polyhedron </p><p>−c </p><p>x<sup style="top: -0.6217em;">⋆ </sup></p><p>P</p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–17 </li></ul><p></p><p>Examples </p><p>diet problem: choose quantities x<sub style="top: 0.258em;">1</sub>, . . . , x<sub style="top: 0.258em;">n </sub>of n foods <br>• one unit of food j costs c<sub style="top: 0.258em;">j</sub>, contains amount a<sub style="top: 0.258em;">ij </sub>of nutrient i • healthy diet requires nutrient i in quantity at least b<sub style="top: 0.258em;">i </sub></p><p>to find cheapest healthy diet, minimize c<sup style="top: -0.6247em;">T </sup>x subject to&nbsp;Ax ꢀ b, x&nbsp;ꢀ 0 </p><p>piecewise-linear minimization </p><p>minimize max<sub style="top: 0.258em;">i=1,...,m</sub>(a<sup style="top: -0.6248em;">T</sup><sub style="top: 0.447em;">i </sub>x + b<sub style="top: 0.258em;">i</sub>) </p><p>equivalent to an LP minimize t </p><p>subject to&nbsp;a<sup style="top: -0.6247em;">T</sup><sub style="top: 0.447em;">i </sub>x + b<sub style="top: 0.2588em;">i </sub>≤ t, i&nbsp;= 1, . . . , m </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–18 </li></ul><p></p><p>Chebyshev center of a polyhedron </p><p>Chebyshev center of </p><p>P = {x | a<sup style="top: -0.711em;">T</sup><sub style="top: 0.4252em;">i </sub>x ≤ b<sub style="top: 0.258em;">i</sub>, i&nbsp;= 1, . . . , m} </p><p>is center of largest inscribed ball </p><p>B = {x<sub style="top: 0.258em;">c </sub>+ u | kuk<sub style="top: 0.258em;">2 </sub>≤ r} </p><p>x<sub style="top: 0.2063em;">cheb </sub></p><p>• a<sup style="top: -0.6248em;">T</sup><sub style="top: 0.447em;">i </sub>x ≤ b<sub style="top: 0.258em;">i </sub>for all x ∈ B if and only if </p><p>sup{a<sup style="top: -0.711em;">T</sup><sub style="top: 0.4253em;">i </sub>(x<sub style="top: 0.258em;">c </sub>+ u) | kuk<sub style="top: 0.258em;">2 </sub>≤ r} = a<sup style="top: -0.711em;">T</sup><sub style="top: 0.4253em;">i </sub>x<sub style="top: 0.258em;">c </sub>+ rka<sub style="top: 0.258em;">i</sub>k<sub style="top: 0.258em;">2 </sub>≤ b<sub style="top: 0.258em;">i </sub></p><p>• hence, x<sub style="top: 0.2588em;">c</sub>, r can be determined by solving the LP maximize r </p><p>subject to&nbsp;a<sup style="top: -0.6248em;">T</sup><sub style="top: 0.4477em;">i </sub>x<sub style="top: 0.2587em;">c </sub>+ rka<sub style="top: 0.2587em;">i</sub>k<sub style="top: 0.2587em;">2 </sub>≤ b<sub style="top: 0.2587em;">i</sub>, i&nbsp;= 1, . . . , m </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–19 </li></ul><p></p><p>Linear-fractional program </p><p>minimize f<sub style="top: 0.258em;">0</sub>(x) subject to&nbsp;Gx ꢁ h </p><p>Ax = b </p><p>linear-fractional program </p><p>c<sup style="top: -0.6247em;">T </sup>x + d e<sup style="top: -0.4973em;">T </sup>x + f </p><p>f<sub style="top: 0.2588em;">0</sub>(x) = </p><p></p><ul style="display: flex;"><li style="flex:1">,</li><li style="flex:1">dom f<sub style="top: 0.2588em;">0</sub>(x) = {x | e<sup style="top: -0.7103em;">T </sup>x + f &gt; 0} </li></ul><p></p><p>• a quasiconvex optimization problem; can be solved by bisection • also equivalent to the LP (variables y, z) </p><p>minimize c<sup style="top: -0.6248em;">T </sup>y + dz subject to&nbsp;Gy ꢁ hz </p><p>Ay = bz e<sup style="top: -0.6247em;">T </sup>y + fz = 1 z ≥ 0 </p><p></p><ul style="display: flex;"><li style="flex:1">Convex optimization problems </li><li style="flex:1">4–20 </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    47 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us