MULTIVARIABLE CALCLABS with MAPLE for Stewart’S

MULTIVARIABLE CALCLABS with MAPLE for Stewart’S

MULTIVARIABLE CALCLABS WITH MAPLE for Stewart’s CALCULUS,FOURTH EDITION Arthur Belmonte and Philip B. Yasskin DRAFT April 22, 1999 c 1999 Brooks/Cole Publishing Company ii Contents Contents iii Dedication viii Introduction ix 1 The Geometry of Rn 1 1.1VectorAlgebra......................................... 1 1.1.1 ScalarsAreNumbers;PointsandVectorsAreLists.................. 1 1.1.2 Addition, Scalar Multiplication and Simplification .................. 3 1.1.3 The Dot Product . ................................. 4 1.1.4 The Cross Product . ................................. 8 1.2Coordinates........................................... 9 1.2.1 Polar Coordinates in R2 ................................ 9 1.2.2 Cylindrical and Spherical Coordinates in R3 ..................... 10 1.3 Curves and Surfaces . ..................................... 12 1.3.1 LinesandPlanes.................................... 12 1.3.2 Quadric Curves and Quadric Surfaces . ...................... 16 1.3.3 Parametric Curves and Parametric Surfaces ...................... 21 1.4Exercises............................................ 23 2 Vector Functions of One Variable: Analysis of Curves 25 2.1VectorFunctionsofOneVariable................................ 25 2.1.1 Definition . ..................................... 25 2.1.2 Limits, Derivatives and Integrals and the map Command............... 27 2.2FrenetAnalysisofCurves................................... 29 2.2.1 Position and Plot . ................................. 29 2.2.2 Velocity, Acceleration and Jerk ............................. 31 2.2.3 Speed,ArcLengthandArcLengthParameter..................... 32 2.2.4 UnitTangent,UnitPrincipalNormal,UnitBinormal................. 34 2.2.5 CurvatureandTorsion................................. 36 2.2.6 Tangential and Normal Components of Acceleration . .............. 37 2.3Exercises............................................ 38 iii iv CONTENTS 3 Partial Derivatives 40 3.1ScalarFunctionsofSeveralVariables............................. 40 3.1.1 Definition . ..................................... 40 3.1.2 Plots.......................................... 41 3.1.3 PartialDerivatives................................... 44 3.1.4 GradientandHessian.................................. 46 3.2Applications........................................... 47 3.2.1 TangentPlanetoaGraph................................ 47 3.2.2 DifferentialsandtheLinearApproximation...................... 48 3.2.3 Taylor Polynomial Approximations . ...................... 52 3.2.4 Chainrule........................................ 55 3.2.5 DerivativesalongaCurveandDirectionalDerivatives................ 60 3.2.6 InterpretationoftheGradient.............................. 63 3.2.7 TangentPlanetoaLevelSurface............................ 66 3.3Exercises............................................ 67 4 Max-Min Problems 69 4.1UnconstrainedMax-MinProblems............................... 70 4.1.1 FindingCriticalPoints................................. 70 4.1.2 ClassifyingCriticalPointsbytheSecondDerivativeTest............... 75 4.2ConstrainedMax-MinProblems................................ 78 4.2.1 EliminatingaVariable................................. 79 4.2.2 ParametrizingtheConstraint.............................. 80 4.2.3 Lagrange Multipliers . ................................. 82 4.2.4 TwoorMoreConstraints................................ 84 4.3Exercises............................................ 87 5 Multiple Integrals 89 5.1 Multiple Integrals in Rectangular Coordinates . ...................... 89 5.1.1 Computation...................................... 89 5.1.2 Applications...................................... 92 5.2 Multiple Integrals in Standard Curvilinear Coordinates . .................. 95 5.2.1 PolarCoordinates.................................... 95 5.2.2 CylindricalCoordinates................................ 96 5.2.3 SphericalCoordinates................................. 98 5.2.4 Applications...................................... 100 5.3 Multiple Integrals in General Curvilinear Coordinates . .................. 103 5.3.1 General Curvilinear Coordinates . ...................... 103 5.3.2 Multiple Integrals . ................................. 107 5.4Exercises............................................ 113 6 Line and Surface Integrals 116 6.1ParametrizedCurves...................................... 116 6.1.1 LineIntegralsofScalars................................ 116 6.1.2 Mass,CenterofMassandMomentofInertia..................... 118 6.1.3 LineIntegralsofVectors................................ 120 CONTENTS v 6.1.4 WorkandCirculation.................................. 122 6.2 Parametrized Surfaces . ..................................... 125 6.2.1 TangentandNormalVectors.............................. 126 6.2.2 SurfaceArea...................................... 127 6.2.3 SurfaceIntegralsofScalars............................... 128 6.2.4 Mass,CenterofMassandMomentofInertia..................... 128 6.2.5 SurfaceIntegralsofVectors.............................. 131 6.2.6 FluxandExpansion.................................. 133 6.3Exercises............................................ 136 7 Vector Differential Operators 139 7.1TheDelOperatorandtheGradient............................... 139 7.2Divergence........................................... 139 7.2.1 Computation...................................... 139 7.2.2 Applications...................................... 142 7.3Curl............................................... 144 7.3.1 Computation...................................... 144 7.3.2 Applications...................................... 145 7.4 Higher Order Differential Operators and Identities . ...................... 146 7.4.1 LaplacianofaScalar.................................. 146 7.4.2 LaplacianofaVector.................................. 147 7.4.3 HessianofaScalar................................... 147 7.4.4 HigherOrderGradientsofScalars........................... 148 7.4.5 CurlofaGradient................................... 148 7.4.6 DivergenceofaCurl.................................. 149 7.4.7 Differential Identities . ................................. 150 7.5FindingPotentials........................................ 151 7.5.1 ScalarPotentials.................................... 152 7.5.2 VectorPotentials.................................... 153 7.6Exercises............................................ 154 8 Fundamental Theorems of Vector Calculus 156 8.1 Generalizing the Fundamental Theorem of Calculus ...................... 156 8.2 Fundamental Theorem of Calculus for Curves . ...................... 157 8.2.1 Verification....................................... 157 8.2.2 Applications...................................... 158 8.3Green’sTheorem........................................ 161 8.3.1 Verification....................................... 161 8.3.2 Applications...................................... 165 8.4Stokes’Theorem(TheCurlTheorem)............................. 167 8.4.1 Verification....................................... 167 8.4.2 Applications...................................... 168 8.5Gauss’Theorem(TheDivergenceTheorem).......................... 174 8.5.1 Verification....................................... 174 8.5.2 Applications...................................... 176 8.6RelatedLine,SurfaceandVolumeIntegrals.......................... 179 vi CONTENTS 8.6.1 RelatedLineandSurfaceIntegrals........................... 179 8.6.2 RelatedSurfaceandVolumeIntegrals......................... 182 8.7Exercises............................................ 185 9Labs 188 9.1Orienteering........................................... 189 9.2 Dot and Cross Products ..................................... 191 9.3 Lines, Planes, Quadric Curves and Quadric Surfaces . .................. 192 9.4ParametricCurves........................................ 193 9.5FrenetAnalysisofCurves................................... 195 9.6LinearandQuadraticApproximations............................. 197 9.7MultivariableMax-MinProblems............................... 198 9.8AVolumeofDesserts...................................... 200 9.9InterpretationoftheDivergence................................ 203 9.10InterpretationoftheCurl.................................... 204 9.11Gauss’Law........................................... 206 9.12Ampere’sLaw.......................................... 208 10 Projects 210 Projects on Vectors and Multivariable Differentiation ..................... 211 10.1TotalingGravitationalForces.................................. 211 10.2AnimateaCurve........................................ 212 10.3Newton’sMethodin2Dimensions............................... 212 10.4GradientMethodofFindingExtrema.............................. 213 10.5TheTrashDumpster...................................... 215 10.6LocatinganApartment..................................... 216 Projects on Multivariable Integration .............................. 216 10.7 p-Normed Spaceballs: The Area of a Unit p-NormedCircle.................. 216 10.8TheVolumeBetweenaSurfaceandItsTangentPlane..................... 218 10.9 Hyper-Spaceballs: The Hypervolume of a Hypersphere . .................. 218 10.10TheCenterofMassofPlanetX................................ 220 10.11 The Skimpy Donut . ..................................... 222 10.12 Steradian Measure . ..................................... 223 AThevec calc Package 225 A.1Acknowledgments....................................... 225 A.2DescriptionofthePackage................................... 225 A.3 Obtaining and Installing the Files . ............................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    251 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us