Hmath011-Endmatter.Pdf

Hmath011-Endmatter.Pdf

Selected Title s i n This Serie s Volume 11 Jun e Barrow-Gree n Poincare an d th e thre e bod y proble m 1997 10 Joh n Stillwel l Sources o f hyperbolic geometr y 1996 9 Bruc e C . Berndt an d Robert A . Ranki n Ramanujan: Letter s an d commentar y 1995 8 Kare n Hunger Parshal l and David E. Rowe The emergenc e o f the American mathematica l researc h community , 1876-1900 : J . J. Sylvester , Feli x Klein , an d E . H . Moor e 1994 7 Hen k J. M . Bo s Lectures i n the histor y o f mathematic s 1993 6 Smilk a Zdravkovsk a and Peter L . Duren, Editor s Golden years o f Mosco w mathematic s 1993 5 Georg e W. Macke y The scop e and histor y o f commutative an d noncommutativ e harmoni c analysi s 1992 4 Charle s W. McArthu r Operations analysi s i n the U.S . Army Eight h Ai r Forc e i n World Wa r I I 1990 3 Pete r L . Duren, editor, e t al . A century o f mathematics i n America , par t II I 1989 2 Pete r L . Duren, editor, et al . A century o f mathematics i n America, par t I I 1989 1 Pete r L . Duren, editor, et al . A century o f mathematics i n America , par t I 1988 This page intentionally left blank Poincare and the Three Body Problem This page intentionally left blank https://doi.org/10.1090/hmath/011 History o f Mathematic s Volume 1 1 Poincare and the Three Body Problem June Barrow-Green American Mathematical Societ y London Mathematica l Societ y Editorial Boar d American Mathematica l Societ y Londo n Mathematica l Societ y George E . Andrew s Davi d Fowle r Bruce Chandle r Jerem y J . Gray . Chairma n Paul R . Halmos , Chairma n S . J . Patterso n George B . Seligma n 1991 Mathematics Subject Classification. Primar y 01 ; Secondary 70 . Photographs o n th e cove r ar e Henr i Poincar e (inset ) an d Osca r II , Kin g o f Sweden an d Norway (background) . A lis t o f photograp h an d figure credit s i s included a t th e beginnin g o f thi s volume . Library o f Congres s Cataloging-in-Publicatio n Dat a Barrow-Green, June , 1953 - Poincare an d th e thre e bod y proble m / Jun e Barrow-Green . p. cm . — (Histor y o f mathematics, ISS N 0899-2428 ; v. 11 ) Includes bibliographica l reference s (p . - ) and index . ISBN 0-8218-0367- 0 (acid-fre e paper ) 1. Three-body problem . 2 . Hamiltonian systems . 3 . Poincare , Henri , 1854-1912—Contribu - tions i n dynamics. I . Title. II . Series . QA852.B37 199 6 515'.352-<lc20 96-1111 2 CIP Copying an d reprinting . Individua l reader s o f this publication , an d nonprofi t librarie s actin g for them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying, or multiple reproduction o f any material i n this publicatio n (including abstracts ) i s permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Requests fo r suc h permissio n shoul d b e addresse d t o th e Assistan t t o th e Publisher , America n Mathematical Society , P . O. Bo x 6248 , Providence , Rhod e Islan d 02940-6248 . Request s ca n als o be mad e b y e-mai l t o reprint-permissionQams.org . © 199 7 by th e America n Mathematica l Society . Al l right s reserved . Printed i n the Unite d State s o f America . Reprinted wit h correction s 1997 . The America n Mathematica l Societ y retain s al l right s except thos e granted t o th e Unite d State s Government . @ Th e pape r use d i n this boo k i s acid-free an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . The Londo n Mathematica l Societ y i s incorporated unde r Roya l Charte r and i s registered wit h th e Charit y Commissioners . 10 9 8 7 6 5 4 3 0 2 01 00 9 9 For m y Mother an d Siste r and i n memory o f my Fathe r an d Brothe r with love and thanks This page intentionally left blank Contents Acknowledgements x i Photograph an d Figur e Credit s xii i Chapter 1 . Introductio n 1 Chapter 2 . Historica l Backgroun d 7 2.1. Introductio n 7 2.2. Mathematica l descriptio n o f the three bod y proble m 8 2.3. Histor y o f the three body proble m 1 4 Chapter 3 . Poincare' s Wor k befor e 188 9 2 9 3.1. Introductio n 2 9 3.2. Th e qualitativ e theor y o f differential equation s 2 9 3.3. Celestia l mechanic s an d the three body proble m 4 1 3.4. Othe r paper s 4 4 Chapter 4 . Osca r IPs 60t h Birthda y Competitio n 4 9 4.1. Introductio n 4 9 4.2. Organisatio n o f the competitio n 5 1 4.3. Kronecker' s criticis m 5 9 4.4. Th e entrie s i n the competitio n 6 1 4.5. Judgin g th e entrie s 6 3 4.6. Th e announcemen t o f the resul t 6 5 4.7. Discover y o f the erro r 6 7 4.8. Publicatio n o f the winnin g entrie s 6 9 Chapter 5 . Poincare' s Memoi r o n the Three Bod y Proble m 7 1 5.1. Introductio n 7 1 5.2. Table s o f contents 7 2 5.3. Poincare' s introduction s 7 3 5.4. Genera l propertie s o f differential equation s 7 5 5.5. Theor y o f invariant integral s 8 3 5.6. Theor y o f periodic solution s 9 1 5.7. Stud y o f the cas e with tw o degrees o f freedom 10 4 5.8. Stud y o f asymptotic surface s 10 8 5.9. Furthe r result s 12 2 5.10. Attempt s a t generalisatio n 13 0 Chapter 6 . Receptio n o f Poincare's Memoi r 13 3 6.1. Introductio n 13 3 x CONTENT S 6.2. Th e view s o f the priz e commissio n 6.3. Gylde n 6.4. Minkowsk i 6.5. Hil l 6.6. Whittake r 6.7. Othe r commentator s Chapter 7 . Poincare' s Relate d Wor k afte r 188 9 7.1. Introductio n 7.2. "Le s Methodes Nouvelle s d e la Mecaniqu e Celeste " 7.3. Th e three body proble m an d celestia l mechanic s 7.4. Genera l dynamic s an d "Th e Last Geometri c Theore m Chapter 8 . Associate d Mathematica l Activit y 8.1. Introductio n 8.2. Stabilit y 8.3. Singularitie s an d regularisatio n 8.4. Numerica l investigation s int o periodic solution s Chapter 9 . Hadamar d an d Birkhof f 9.1. Introductio n 9.2. Hadamar d an d geodesie s 9.3. Birkhof f an d dynamica l system s Chapter 10 . Epilogu e 10.1. Introductio n 10.2. Mors e 10.3. KA M theor y Appendix 1 . A letter fro m Gost a Mittag-Leffle r to Sony a Kovalevskay a Appendix 2 . Announcemen t o f the Osca r Competitio n Appendix 3 . Entrie s receive d i n the Osca r Competitio n Appendix 4 . Repor t o f the Priz e Commissio n Appendix 5 . Titl e Page s an d Table s o f Content s 5.1. Poincare' s Unpublishe d Memoi r 5.2. Poincare' s Publishe d Memoi r Appendix 6 . Theorem s i n [PI ] no t include d i n [P2 ] References Acknowledgements This boo k derive s fro m th e Ph D thesi s I prepare d a t th e Ope n Universit y between 1989-1993 , and I am very grateful t o Jeremy Gray, who suggested the topic and patientl y supervise d th e wor k involved . Hi s help , enthusiasm , an d kindnes s were unfailing an d hi s scholarship a n inspiration . Several peopl e bot h i n thi s countr y an d abroa d hav e gon e ou t o f thei r wa y on m y behal f an d I exten d thank s t o the m all . I particularl y wis h t o than k th e Institut Mittag-Leffle r (show n below ) fo r allowin g m e t o us e thei r archives , an d whose staf f provide d m e wit h ever y possibl e assistanc e durin g th e tim e I spen t there; Jespe r Lutzen , Roge r Cooke , an d Sergue i Demido v fo r helpin g t o mak e m y visit to the Institut Mittag-Leffle r s o rewarding and enjoyable ; an d Stee n Norgaar d for providin g insigh t int o Scandinavian culture , and whos e skill s o f translation an d sense o f humour wer e a constant sourc e o f delight .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    65 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us