V V R Ratio, N Compressio = Internal Combustion Engines

V V R Ratio, N Compressio = Internal Combustion Engines

Internal Combustion Engines V2 V1 V1 Compression Ratio, rc = V2 Bottom Top Dead Dead Center Center BDC TDC 1 Lenoir Cycle 1860 Intake Combustion Power TDC Exhaust TDC 0-1 1-2 2-3 3-0 p=constant v=constant Q=0 p=constant one revolution 2 Q Air Standard p v=c Q=0 Lenoir Cycle 0 3 1 Q p=c 2 v Air Standard Lenoir Cycle 2 Closed Thermodynamic System - quantity of mass Q q = Δu + w Q=0 p v=c 2 - 3 Combustion Process 0 v = constant Þ w = 0 3 q = u 2 - u1 1 Q p=c 2 - 3 Expansion Process, Power Stroke q = 0,adiabticprocess k k -1 k-1 T3 æ p3 ö æ v2 ö = ç ÷ = ç ÷ T2 è p2 ø è v1 ø w = -(u 2 - u3 ) 3-1 Exhaust Process p = c q = Δu + w q = (u1 - u3 ) + p3 (v1 - v3 ) = h1 - h3 w = q31 - (u3 - u1) 3 OTTO CYCLE , 2 Revolutions/cycle Compression Combustion Power Exhaust Exhaust Intake 1-2 2-3 3-4 4-1 1-0 0-1 TDC BDC TDC BDC revolution 1 revolution 2 3 p OTTO CYCLE spark ignition, SI fuel injection + SI 2 4 0 1 v 4 4 CYCLE, 2 REVOLUTIONS Revolution 1 Revolution 2 5 Air Standard Otto Cycle Closed System- a quantity of mass p p adiabatic and isentropic W Q v ignition exhaust opens W atmospheric pressure intake opens intake closes exhaust closes W v 6 AIR STANDARD OTTO CYCLE, 2 Revolutions/cycle Q in Qout V=c V=c W Win out Compression Combustion Expansion Exhaust 1-2 2-3 Power 4-1 3-4 p p Q adiabatic in W v=const isentropic 4 adiabatic 4 2 2 isentropic v=const Qout W 1 1 7 v v “COLD” Compression 1 ® 2, Δs = 0, pvk = c, q = 0, w = Δu k k Air Standard Otto Cycle p1v1 = p2v2 k-1 æ v ö ç 1 ÷ 3 T2 = T1ç ÷ è v2 ø Δs = 0 w 2-1 = Δu = u 2-u1 = cv (T2 - T1 ) T qin pvk = c Combustion 2 ® 3, v = c, w = pdv = 0, q =ΔU Q = 0, ò q2-3 = Δu = u3 - u 2 = cv (T3 - T2 ) 2 k 4 Expansion 3 ® 4, Δs = 0, pv = c, q = 0, w = ΔU k-1 q æ v ö out T = T ç 3 ÷ 4 3ç v ÷ 1 è 4 ø v w3-4 = Δu = u3 - u 4 = cv (T3 - T4 ) CLOSED SYSTEM Exhaust 4 ®1, v = c, w = ò pdv = 0, q =ΔU q = Δu + w q4-1 = Δu = u 4 - u1 = cv (T4 - T1 ) "COLD"Þ Cycle constant c c at T . qout q4-1 cv (T4 - T1 ) p, v 1 ηcycle =1- = 1- = 1- 8 qin q3-2 cv (T3 - T2 ) 3 “COLD”Air Standard Otto Cycle CLOSED SYSTEM, Q = ΔU + W "COLD"Þ T Compression 1 ® 2, Δs = 0, Q = 0, W = ΔU constant cp, cv at T1 Combustion 2 ® 3, v = c, W = ò pdv = 0, Q =ΔU Expansion 3 ® 4, Δs = 0, Q = 0, W = ΔU 2 4 Exhause 2 ® 3, v = c, W = ò pdv = 0, Q =ΔU 1.0 Ds2®3 = Δs4®1 1.0 1 æ T ö æ v ö æ T ö æ v ö ç 3 ÷ ç 3 ÷ ç 4 ÷ ç 4 ÷ cvlnç ÷ - R lnç ÷ = cvlnç ÷ - R lnç ÷ è T2 ø è v2 ø è T1 ø è v1 ø V2 V1 T T V v 3 = 4 Compression Ratio = r = 1 = 1 T T c V v 2 1 2 2 k-1 T æ v ö Q - Q Q 1 2 η =1- in out =1- out - = ç ÷ T2 è v1 ø Qin Qin 1 1 1 u 4 - u1 cv (T4 - T1 ) η =1- k-1 =1- k-1 =1- k-1 η =1- =1- æ v ö æcompressionö (r) u - u c T - T 1 3 2 v ( 3 2 ) ç ÷ ç ÷ è v2 ø è ratio ø æ T ö ç 4 ÷ w = p ´ V - V ç -1÷ net mean ( 2 1 ) T4 - T1 T1 è T1 ø η =1- =1- wnet T - T T æ ö Mean Effective Pressure (mep) = 3 2 2 T3 (V - V ) 9 ç -1÷ 1 2 è T2 ø What is the thermal efficiency k-1 æ v ö of a COLD air standard Otto cycle T = T ç 1 ÷ = 559.7´6.4 =1146o R operating between 2800 F and 2 1ç ÷ è v2 ø 100 F with a compression ratio of 6? w 2-1 = u 2-u1 = cv (T2 - T1 ) w = .171´(1146- 559.7) =100.3BTU/lb Closed System 2-1 q = u - u Q = ΔU + W 2-3 3 1 Compression 1® 2, Δs = 0, q = 0, w = Δu q2-3 = .171´(3259.7 -1146) = 361.4BTU/lb k-1 .4 Combustion 2 ® 3,v = c, w = pdv = 0, q =Δu æ v ö æ 1 ö ò ç 3 ÷ o T4 = T3ç ÷ = 3259.7ç ÷ =1591.9 R Expansion 3 ® 4, Δs = 0, q = 0, w = Δu è v4 ø è 6 ø Exhaust 2 ® 3, v = c, w = pdv = 0, q =ΔU ò w3-4 = u3 - u 4 w = .171(3259.7 -1591.9) = 285.2BTU/lb 3 3-4 2800 F q4-3 = u 4 - u3 q4-3 = .171(1591.9- 559.7) =176.5BTU/lb p W Q æ w ö æ 285.2-100.3ö ç net ÷ ηcycle = ç ÷ = ç ÷ = 51.1% è qin ø è 361.4 ø 2 4 Q 1 1 W η =1- =1- = 51.1% cycle k-1 61.4-1 1 æ v1 ö 100F ç ÷ 10 è v2 ø v AIR TABLE - Tables A-22, A-22E specific heats are integrated as variables of T- page 113, 230 1) Table base 0o F, 0o C 5) Entropy - ideal gas æ T ö æ v ö ç 2 ÷ ç 2 ÷ s2 - s1 = cvln ç ÷ + R lnç ÷ 2) Isentropic Process, è T1 ø è v1 ø pvk = constant æ T ö æ p ö s - s = c ln ç 2 ÷ - R lnç 2 ÷ p (p ) 2 1 p ç ÷ ç ÷ 1 = r 1 è T1 ø è p1 ø p (p ) 2 r 2 Entropy - Using Table A - 22 and Table A 22E, v (v ) 1 = r 1 dT v (v ) s = c (T) + R ln (volume ratio) 2 r 2 ò v T dT s = c (T) - R ln (pressure ratio) 3) Enthalpy ò p T h = cp (T) dT æ v ö ò 0 0 ç 2 ÷ s2 - s1 = s (T2 ) - s (T1) + R lnç ÷ è v1 ø 4) Internal Energy æ p ö s - s = s0 (T ) - s0 (T ) - R lnç 2 ÷ u = c (T) dT 2 1 2 1 ç ÷ 11 ò v è p1 ø @ 300o K, v = 621.2, u = 214.07 r1 1 9.1 RT .286´300 3 v1 = = = .858 m3/kg p p 100 1400 r=8.5 v v æ v ö kJ/kg r2 = 2 , v = v ç 2 ÷ = 621.2/8.5 = 73.08 v v r2 r1ç v ÷ 4 r1 1 è 1 ø 2 T vr u 75.5 496.62 1 73.08 503.06 kJ/g = u 3 100 kPa 72.56 504.45 v 300 K 73.08 - 72.56 .52 interpolation ratio = = = .1769 75.5 - 72,56 2.94 a) W = Qin - Qout =1400 - 674.25 W = 725.75kJ/kg Qin = u3 - u 2 = 1400 kJ/kg u3 =1400 - 503.6 =1903.06 kJ/kg æ Qout ö 725.75 b) η =1- ç ÷ =1- = 51.8 % InterpolateTableA - 22 near u3 =1903.6 kJ/kg è Qin ø 1400 vr3 =1.9176 W W c) mep = = æ v ö V - V æ v ö ç 4 ÷ 1 2 ç 2 ÷ vr4 = vr3ç ÷ =1.9176´8.5 =16.3 v1ç1- ÷ è v3 ø è v1 ø Interpolate TableA - 22 near v =16.3 725.75 r4 mep == = 958.7 psi u 4= 888.32 kJ/kg æ 1 ö .858´ç1- ÷ 12 Qout = (u3-u 4 ) = (888.32 - 214.07) = 674.25kJ/kg è 8.5 ø The initial temperature and pressure of Process 1-2 air inan ideal Cold Otto cycle having a compression ratio of10, is 60 F and 14.7 psia isentropic, adiabatic with pvk = constant respectively. Heat isadded in the constant k-1 æ V ö volume process at a rateof 800 BTU/lbm. ç 1 ÷ .4 o T2 = T1 ´ç ÷ = 520´10 =1305 Consider air to be an idea gas. è V2 ø a) Calculate: a) The change in internal energy per pound of air ΔU =cv (T2 -T1 ) = .17´(1305 -520) =134.2BTU/lb during the compression process. b) b) The maximum temperature and pressure of the cycle Combustion Heat,Q = cv (T3 -T2 ) k =1.4 800 = .17´(T3 -1305) cv =.171BTU/lbm-R T = 5893o R cp =.24BTU/lbm-R 3 Since V = V , from the ideal gas law Pv = mRT, 3 2 3 Expansion æ T ö ç 3 ÷ p3 = p2ç ÷ è T2 ø p Since 1- 2 is isentropic and adiabatic, Combustion k 2 Q=800 BTU/lb 4 æ V ö p = p ç 1 ÷ =14.7´101.4 = 367psia Compression Exhaust 2 1ç ÷ è V2 ø 1 14.7 psia 520 R æ 5983 ö 13 .1´V1 V1 p3 = 367´ç ÷ =1685psia V è1305 ø a) A 265 cubic in V8 gasoline engine (1500 -1200) BTU/power stroke/cylinder ´8 cylinders ´ 4600 rpm runs at 4600 rpm. Compression work HP = is 1200 ft-lb, expansion work is 550 ft - lb/HP ´ 2 rev/ power stroke ´ 60 sec/min 1500 ft-lb and heat input is 1.27 BTU HP = 167.3 HP per piston per cycle.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    40 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us