Antiderivatives and Indefinite Integration

Antiderivatives and Indefinite Integration

ANTIDERIVATIVES AND INDEFINITE INTEGRATION The opposite of a derivative is called an antiderivative or integral. Definition: A function F is an antiderivative of f on an interval I if for all x in I. EX #1: Antiderivatives differ only by a constant, C: C is called the constant of integration Family of all antiderivatives of f(x) = 2x and the general solution of the differential equation A differential equation in x and y is an equation that involves x, y, and derivatives of y. For example: and 1 EX #2: Solving a Differential Equation EX #3: Notation for antiderivatives: The operation of finding all solutions of this equation is called antidifferentiation or indefinite integration denoted by sign. differential form General Solution is denoted by: Variable of Constant of Integration Integration Integrand read as the antiderivative of f with respect to x. So, the differential dx serves to identify x as the variable of integration. The term indefinite integral is a synonym for antiderivative. 2 BASIC INTEGRATION RULES Integration is the “inverse” of differentiation. Differentiation is the “inverse” of integration. Differentiation Formula Integration Formula POWER RULE: 3 EX #4: Applying Basic Rules EX #5: Rewriting Before Integrating Original Integral Rewrite Integrate Simplify 4 EX # 6: Polynomial Functions A. B. C. EX #7: Integrate By Rewriting 5 EX #8: Solve differential equations subject to given conditions. Given: and 6 EX #9: A ball is thrown upward with an initial velocity of 64 feet per second from an initial height of 80 feet. A. Find the position function giving the height, s, as a function of the time t. B. When does the ball hit the ground? 7 EX. #10: An evergreen nursery usually sells a certain shrub after 6 years of growth and shaping. The growth rate during those 6 years is approximated by dh/dt = 1.5t + 5, where t is the time in years, and h is the height in centimeters. The seedlings are 12 centimeters tall when planted (t = 0). A. Find the height after t years. [Hint: the derivative is a rate of change of a function and the integral is the initial function.] B. How tall are the shrubs when they are sold? 8.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us