Distance Dependence of Photoinduced Long-Range Electron Transfer in Zinc/Ruthenium-Modified Myoglobins

Distance Dependence of Photoinduced Long-Range Electron Transfer in Zinc/Ruthenium-Modified Myoglobins

J. Am. Chem. SOC.1988, 110, 435-439 435 Distance Dependence of Photoinduced Long-Range Electron Transfer in Zinc/Ruthenium-Modified Myoglobins Andrew W. Axup, Michael Albin, Stephen L. Mayo, Robert J. Crutchley,' and Harry B. Gray* Contribution No. 7588 from the Arthur Amos Noyes Laboratory, California Institute of Technology, Pasadena, California 91 125. Received May 8, I987 Abstract: An experimental investigation of the distance dependence of long-range electron transfer in zinc/ruthenium-modified myoglobins has been performed. The modified proteins were prepared by substitution of zinc mesoporphyrin IX diacid (ZnP) for the heme in each of four previously characterized pentaammineruthenium(II1) (a5Ru; a = NH,) derivatives of sperm whale myoglobin (Mb): a5Ru(His-48)Mb, aSRu(His-12)Mb, a5Ru(His-l 16)Mb, a5Ru(His-81)Mb. Electron transfer from the ZnP triplet excited state (,ZnP*) to Ru3+, 3ZnP*-Ru3t -+ ZnP+-Ru2+ (AEo - 0.8 V) was measured by time-resolved transient absorption spectroscopy: rate constants (kf)are 7.0 X lo4 (His-48), 1.0 X IO2 (His-12), 8.9 X 10' (His-1 16), and 8.5 X IO' (His-81) s-' at 25 OC. Activation enthalpies calculated from the temperature dependences of the electron-transfer rates over the range 5-40 OC are 1.7 i 1.6 (His-48), 4.7 i 0.9 (His-12), 5.4 i 0.4 (His-116), and 5.6 i 2.5 (His-81) kcal mol-'. Electron-transfer distances (d = closest ZnP edge to a5Ru(His) edge; angstroms) were calculated to fall in the following ranges: His-48, 11.8-16.6; His-12, 21.5-22.3; His-116, 19.8-20.4; His-81, 18.8-19.3. The rate-distance equation is kf = 7.8 X lo8 exp[-0.9l(d - 3)] 8. The data indicate that the 3ZnP*-Ru(His-12)3+ electronic coupling may be enhanced by an intervening tryptophan (Trp-14). Long-range electron transfers are important mechanistic steps it is generally assumed that the rates of these transfers are de- in many biological oxidation-reduction reactions.2-16 Although termined to a large extent by the donor-acceptor separation and the nature of the intervening medi~m,l'-~'very few experiments (1) Present address: Department of Chemistry, Carleton University, Ot- have addressed these points in a systematic manner.'^^.'' tawa, Canada KlS 5B6. One approach to the study of long-range electron transfer is (2) Hatefi, Y. Annu. Reo. Biochem. 1985, 54, 1015-1069. to attach a redox-active complex to a specific surface site of a (31 Dixit. B. P. S.N.; Vanderkooi. J. M. Curr. TOO.Bioenera. 1984. 13, 159-202. structurally characterized heme or blue copper protein, thereby (4) Michel-Beyerle, M. E.; Ed. Antennas and Reaction Centers of Pho- producing a two-site molecule with a fixed donor-acceptor dis- tosynthetic Bacteria; Springer-Verlag: Berlin, 1985. tance. The redox-active complex that has been employed suc- (5) De Vault, D. Quantum Mechanical Tunnelling in Biological Systems, 2nd ed.; Cambridge University: Cambridge, 1984. cessfully in several previous experiments is a5Ru2+/3+(a = NH,), (6) Sykes, A. G. Chem. SOC.Rev. 1985, 14, 283-315. which covalently bonds to surface histidines.8-12 This complex (7) Brunschwig, B. S.; DeLaive, P. J.; English, A. M.; Goldberg, M.; Gray, can be attached by the reaction of a5Ru(OH,)2t with native H. B.; Mayo, S. L.; Sutin, N. Inorg. Chem. 1985, 24, 3743-3749. protein under mild conditions, and the ruthenated protein can be (8) (a) Gray, H. B. Chem. SOC.Rev. 1986,15, 17-30. (b) Mayo, S. L.; Ellis, W. R., Jr.; Crutchley, R. J.; Gray, H. B. Science (Washington, D.C.) purified by ion-exchange chromatography. 1986, 233, 948-952. In order to probe distance effects on long-range electron (9) (a) Yo", K. M.; Shelton, J. B.; Shelton, J. R.; Schroeder, W. A,; transfer, we have replaced the heme in four ruthenated myoglobins Worosila, G.; Isied, S. S.; Bordignon, E.; Gray, H. B. Proc. Natl. Acad. Sci. (a5Ru(His-48)Mb; a5Ru(His-12)Mb; a5Ru(His-l16)Mb; a5Ru- U.S.A. 1982,79,7052-7055. (b) Winkler, J. R.; Nocera, D. G.; Yocom, K. whale myoglobin)'O M.; Bordignon, E.; Gray, H. B. J. Am. Chem. SOC.1982, 104, 5798-5800. (His-81)Mb: Mb = sperm by zinc meso- (c) Yocom, K. M.; Winkler, J. R.; Nocera, D. G.; Bordignon, E.; Gray, H. porphyrin IX diacid (ZnP). The ZnP excited triplet state (3ZnP*) B. Chem. Scr. 1983, 21, 29-33. (d) Kcstic, N. M.; Margalit, R.; Che, C.-M.; is a much more powerful electron donor than a reduced heme Gray, H. B. J. Am. Chem. SOC.1983, 105, 7765-7767. (e) Margalit, R.; (hE0(3ZnP*-Ru3+- ZnP+-Ru2+) - 0.8 V)," thereby allowing Kostic, N. M.; Che, C.-M.; Blair, D. F.; Chiang, H.-J.; Pecht, I.; Shelton, J. different electron-transfer distances to B.; Shelton, J. R.; Schroeder, W. A.; Gray, H. B. Proc. Natl. Acari. Sci. U.S.A. four be examined in a single 1984, 81, 6554-6558. (f) Nocera, D. G.; Winkler, J. R.; Yocom, K. M.; protein molecule. Bordimon. E.: Grav. H. B. J. Am. Chem. SOC.1984. 106. 5145-5150. (E\ Section Crutciicy,'R. J.; Elk, W. R., Jr.; Gray, H. B. J. Am.Chem. Soc. 1985, IO?, Experimental 5002-5004. (h) Lieber, C. M.; Karas, J. L.; Gray, H. B. J. Am. Chem. SOC. Materials and Apparatus. Distilled water, filtered through a Barnstead -.19117.- . , -109. - ., -3778-3779. - - . Nanopure water purification system (No. 2794, specific resistance >18 (10) Crutchley, R. J.; Ellis, W. R., Jr.; Gray, H. B. Frontiers in Bioinor- Ma-cm), was used in the preparation of all aqueous solutions. 2-Buta- ganic Chemistry; Xavier, A. V., Ed.; VCH: Weinheim, FRG, 1986; pp none (MCB) was stored over aluminum oxide (Woelm neutral, Waters 679-693. Crutchley, R. J.; Ellis, W. R., Jr.; Shelton, J. B.; Shelton, J. R.; Associates) at 4 OC to prevent the accumulation of peroxides. All other Schroeder, W. A.; Gray, H. B., to be submitted for publication. reagents were used as received. (1 1) Axup, A. W. Ph.D. Thesis, California Institue of Technology, Pasa- dena, CA, 1987. Carboxymethylcellulose cation-exchange resin, CM-52 (Whatman, (12) (a) Isied, S. S.; Worosila, G.; Atherton, S.J. J. Am. Chem. Soc. 1982, preswollen, microgranular), was equilibrated as indicated by the manu- 104,7659-7661. (b) Isied, S. S.; Kuehn, C.; Worosila, G. J. Am. Chem. SOC. facturer (six-aliquot buffer changes). Five column volumes of buffer 1984, 106, 1722-1726. (c) Bechtold, R.; Gardineer, M. B.; Kazmi, A,; van were passed to pack the column prior to use. CM-52 resins were cleaned Hemelryck, B.; Isied, S.S. J. Phys. Chem.1986,90,3800-3804. (d) Bechtold, after use by washing with a high-salt solution (-1-3 M NaCI). Seph- R.; Kuehn, C.; Lepre, C.; Isied, S. S. Nature (London) 1986,322,286-288. adex ion-exchange gel, G-25-80 (Sigma, bead size 20-80 fim) was (13) (a) McGourty, J. L.; Blough, N. V.; Hoffman, B. M. J. Am. Chem. equilibrated in the desired buffer, slurried, and poured in a fashion similar Soc. 1983,105,4470-4472. (b) Ho, P. S.;Sutoris, C.; Liang, N.; Margoliash, to that described for CM-52. Sephadex gels were cleaned by multiple E.; Hoffman, B. M. J. Am. Chem. SOC.1985, 107, 1070-1071. (c) Peter- son-Kennedy, s. E.; McGourty, J. L.; Kalweit, J. A.; Hoffman, B. M. J. Am. washings with buffer or water. Chem. SOC.1986, 108, 1739-1746. (14) Liang, N.; Pielak, G. J.; Mauk, A. G.; Smith, M.; Hoffman, B. M. (16) (a) Williams, G.; Moore, G. R.; Williams, R. J. P. Commenrs Inorg. Proc. Natl. Acad. Sci. U.S.A. 198'1, 84, 1249-1252. Chem. 1985,4, 55-98. (b) Williams, R. J. P.; Concar, D. Nature (London) (15) (a) Simolo, K. P.; McLendon, G. L.; Mauk, M. R.; Mauk, A. G. J. 1986,322,213-214. (c) Pielak, G. J.; Concar, D. W.; Moore, G. R.; Williams, Am. Chem. Soc. 1984, 106, 5012-5013. (b) McLendon, G. L.; Winkler, J. R. J. P. Protein Eng. 1987, I, 83-88. R.; Nocera, D. N.; Mauk, M. R.; Mauk, A. G.; Gray, H. B. J. Am. Chem. (17) Marcus, R. A,; Sutin, N. Biochim. Biophys. Acta 1985,811,265-322. Soc. 1985,107,739-740. (c) McLendon, G.; Miller, S. R. J. Am. Chem. SOC. (18) Hopfield, J. J. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 3640-3644. 1985, 107, 781 1-7816. (d) Cheung, E.; Taylor, K.; Komblatt, J. A.; English, (19) Hush, N. S. Coord. Chem. Reu. 1985, 64, 135-157. A. M.; McLendon, G. L.; Miller, J. R. Proc. Natl. Acad. Sci. U.S.A. 1986, (20) Larsson, S. J. Chem. Soc., Faraday Trans. 1983, 79, 1375-1388. 83, 1330-1333. (e) Conklin, K. T.; McLendon, G. L. Inorg. Chem. 1986,25, (21) Scott, R. A,; Mauk, A. G.; Gray, H. B. J. Chem. Educ. 1985, 62, 4804-4806. 932-938. 0002-7863/88/15 10-0435$0 1 .50/0 0 1988 American Chemical Society 436 J. Am. Chem. SOC.,Vol. 110, No. 2, 1988 Axup et al. Samples were degassed and purged with purified argon (passed 3 mL of water. The reaction mixture was heated and refluxed for 2 h. through a manganese oxide column) on a dual-manifold vacuum argon Hydrochloric acid (6 N) was added to precipitate the porphyrin diacid. line. At least five vacuum/purge cycles were used to deoxygenate sam- The reaction mixture was refrigerated overnight.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us