
<p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">1</li></ul><p></p><p><strong>11. Complex Measures </strong></p><p>In the following, (Ω, F) denotes an arbitrary measurable space. </p><p><strong>Definition 90 </strong>Let (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a sequence of complex numbers. We </p><p>say that (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>has the <strong>permutation property </strong>if and only if, for </p><p>ꢀ</p><p>+∞ </p><p>all bijections σ : <strong>N</strong><sup style="top: -0.36em;">∗ </sup>→ <strong>N</strong><sup style="top: -0.3em;">∗</sup>, the series </p><p>a</p><p>converges in <strong>C</strong><sup style="top: -0.3em;">1 </sup></p><p>σ(k) k=1 </p><p>Exercise 1. Let (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a sequence of complex numbers. <br>1. Show that if (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>has the permutation property, then the </p><ul style="display: flex;"><li style="flex:1">same is true of (Re(a<sub style="top: 0.12em;">n</sub>))<sub style="top: 0.12em;">n≥1 </sub>and (Im(a<sub style="top: 0.12em;">n</sub>))<sub style="top: 0.12em;">n≥1 </sub></li><li style="flex:1">.</li></ul><p></p><p>ꢀ</p><p>2. Suppose a<sub style="top: 0.12em;">n </sub>∈ <strong>R </strong>for all n ≥ 1. Show that if <sup style="top: -0.41em;">+∞ </sup>a<sub style="top: 0.12em;">k </sub>converges: </p><p>k=1 </p><p></p><ul style="display: flex;"><li style="flex:1">+∞ </li><li style="flex:1">+∞ </li></ul><p></p><p><sup style="top: -1.03em;">+∞ </sup>|a<sub style="top: 0.12em;">k</sub>| = +∞ ⇒ </p><p>a<sub style="top: 0.25em;">k</sub><sup style="top: -0.35em;">+ </sup></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">a<sup style="top: -0.35em;">−</sup><sub style="top: 0.25em;">k </sub>= +∞ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li></ul><p></p><p><sup style="top: -0.24em;">1</sup>which excludes ∞ as limit. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">2</li></ul><p></p><p>Exercise 2. Let (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a sequence in <strong>R</strong>, such that the series </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p><sup style="top: -0.41em;">+∞ </sup>a<sub style="top: 0.12em;">k </sub>converges, and <sup style="top: -0.41em;">+∞ </sup>|a<sub style="top: 0.12em;">k</sub>| = +∞. Let A > 0. We define: </p><p></p><ul style="display: flex;"><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p>N<sup style="top: -0.34em;">+ </sup>= {k ≥ 1 : a<sub style="top: 0.12em;">k </sub>≥ 0} , N<sup style="top: -0.34em;">− </sup>= {k ≥ 1 : a<sub style="top: 0.12em;">k </sub>< 0} </p><p>1. Show that N<sup style="top: -0.3em;">+ </sup>and N<sup style="top: -0.3em;">− </sup>are infinite. 2. Let φ<sup style="top: -0.3em;">+ </sup>: <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ N<sup style="top: -0.3em;">+ </sup>and φ<sup style="top: -0.3em;">− </sup>: <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ N<sup style="top: -0.3em;">− </sup>be two bijections. Show the existence of k<sub style="top: 0.12em;">1 </sub>≥ 1 such that: </p><p>k<sub style="top: 0.08em;">1 </sub></p><p>ꢁ</p><p>a<sub style="top: 0.15em;">φ</sub><sub style="top: -0.16em;">+ </sub>≥ A </p><p>(k) k=1 </p><p>3. Show the existence of an increasing sequence (k<sub style="top: 0.12em;">p</sub>)<sub style="top: 0.12em;">p≥1 </sub>such that: </p><p>k<sub style="top: 0.08em;">p </sub></p><p>ꢁ</p><p>a<sub style="top: 0.15em;">φ</sub><sub style="top: -0.16em;">+ </sub>≥ A </p><p>(k) k=k<sub style="top: 0.08em;">p−1</sub>+1 </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">3</li></ul><p></p><p>for all p ≥ 1, where k<sub style="top: 0.12em;">0 </sub>= 0. <br>4. Consider the permutation σ : <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ <strong>N</strong><sup style="top: -0.3em;">∗ </sup>defined informally by: </p><p>(φ<sup style="top: -0.34em;">−</sup>(1), φ<sup style="top: -0.34em;">+</sup>(1), . . . , φ<sup style="top: -0.34em;">+</sup>(k<sub style="top: 0.12em;">1</sub>), φ<sup style="top: -0.34em;">−</sup>(2), φ<sup style="top: -0.34em;">+</sup>(k<sub style="top: 0.12em;">1 </sub>+ 1), . . . , φ<sup style="top: -0.34em;">+</sup>(k<sub style="top: 0.12em;">2</sub>), . . .) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃꢄ </li><li style="flex:1">ꢅ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢃꢄ </li><li style="flex:1">ꢅ</li></ul><p></p><p>representing (σ(1), σ(2), . . .). More specifically, define k<sub style="top: 0.21em;">0</sub><sup style="top: -0.3em;">∗ </sup>= 0 </p><p>2</p><p>and k<sub style="top: 0.2em;">p</sub><sup style="top: -0.3em;">∗ </sup>= k<sub style="top: 0.12em;">p </sub>+ p for all p ≥ 1. For all n ∈ <strong>N</strong><sup style="top: -0.3em;">∗ </sup>and p ≥ 1 with: </p><p>k<sub style="top: 0.21em;">p</sub><sup style="top: -0.34em;">∗</sup><sub style="top: 0.21em;">−1 </sub>< n ≤ k<sub style="top: 0.21em;">p</sub><sup style="top: -0.34em;">∗ </sup></p><p>(1) we define: </p><p>ꢆ</p><p></p><ul style="display: flex;"><li style="flex:1">φ<sup style="top: -0.2999em;">−</sup>(p) </li><li style="flex:1">if n = k<sub style="top: 0.21em;">p</sub><sup style="top: -0.3em;">∗</sup><sub style="top: 0.21em;">−1 </sub>+ 1 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">σ(n) = </li><li style="flex:1">(2) </li></ul><p></p><p>φ<sup style="top: -0.3em;">+</sup>(n − p) if n > k<sub style="top: 0.21em;">p</sub><sup style="top: -0.3em;">∗</sup><sub style="top: 0.21em;">−1 </sub>+ 1 </p><p>Show that σ : <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ <strong>N</strong><sup style="top: -0.3em;">∗ </sup>is indeed a bijection. </p><p><sup style="top: -0.23em;">2</sup>Given an integer n ≥ 1, there exists a unique p ≥ 1 such that (1) holds. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">4</li></ul><p></p><p>ꢀ</p><p>+∞ </p><p>5. Show that if </p><p>a</p><p>converges, there is N ≥ 1, such that: </p><p>σ(k) k=1 </p><p>n+p </p><p>ꢁ</p><p>n ≥ N , p ≥ 1 ⇒ a<sub style="top: 0.15em;">σ(k) </sub>< A </p><p>k=n+1 </p><p>6. Explain why (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>cannot have the permutation property. 7. Prove the following theorem: </p><p><strong>Theorem 56 </strong>Let (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a sequence of complex numbers such </p><p>ꢀ</p><p>+∞ </p><p>that for all bijections σ : <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ <strong>N</strong><sup style="top: -0.3em;">∗</sup>, the series </p><p>k=1 </p><p>a</p><p>converges. </p><p>σ(k) k=1 </p><p>ꢀ</p><p>Then, the series <sup style="top: -0.42em;">+∞ </sup>a<sub style="top: 0.12em;">k </sub>converges absolutely, i.e. </p><p><sup style="top: -1.04em;">+∞ </sup>|a<sub style="top: 0.12em;">k</sub>| < +∞ </p><p>ꢁ</p><p>k=1 </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">5</li></ul><p></p><p><strong>Definition 91 </strong>Let (Ω, F) be a measurable space and E ∈ F. We </p><p>call <strong>measurable partition </strong>of E, any sequence (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>of pairwise </p><p>disjoint elements of F, such that E = ꢀ<sub style="top: 0.12em;">n≥1</sub>E<sub style="top: 0.12em;">n</sub>. </p><p><strong>Definition 92 </strong>We call <strong>complex measure </strong>on a measurable space </p><p>(Ω, F) any map μ : F → <strong>C</strong>, such that for all E ∈ F and (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub></p><p>ꢀ</p><p>+∞ </p><p>measurable partition of E, the series <sub style="top: 0.25em;">n=1 </sub>μ(E<sub style="top: 0.12em;">n</sub>) converges to μ(E). The set of all complex measures on (Ω, F) is denoted M<sup style="top: -0.3em;">1</sup>(Ω, F). </p><p><strong>Definition 93 </strong>We call <strong>signed measure </strong>on a measurable space </p><p>(Ω, F), any complex measure on (Ω, F) with values in <strong>R</strong>.<sup style="top: -0.3em;">3 </sup></p><p>Exercise 3. </p><p>1. Show that a measure on (Ω, F) may not be a complex measure. 2. Show that for all μ ∈ M<sup style="top: -0.3em;">1</sup>(Ω, F) , μ(∅) = 0. </p><p><sup style="top: -0.23em;">3</sup>In these tutorials, signed measure may not have values in {−∞, +∞}. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">6</li></ul><p></p><p>3. Show that a finite measure on (Ω, F) is a complex measure with values in <strong>R</strong><sup style="top: -0.3em;">+</sup>, and conversely. </p><p>4. Let μ ∈ M<sup style="top: -0.3em;">1</sup>(Ω, F). Let E ∈ F and (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a measurable partition of E. Show that: </p><p><sup style="top: -1.03em;">+∞ </sup>|μ(E<sub style="top: 0.12em;">n</sub>)| < +∞ </p><p>ꢁ</p><p>n=1 </p><p>5. Let μ be a measure on (Ω, F) and f ∈ L<sup style="top: -0.3em;">1</sup><sub style="top: 0.24em;"><strong>C</strong></sub>(Ω, F, μ). Define: </p><p>ꢇ</p><p>ꢀ</p><p>∀E ∈ F , ν(E) = </p><p>fdμ </p><p>E</p><p>Show that ν is a complex measure on (Ω, F). </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">7</li></ul><p></p><p><strong>Definition 94 </strong>Let μ be a complex measure on a measurable space </p><p>(Ω, F). We call <strong>total variation </strong>of μ, the map |μ| : F → [0, +∞], </p><p>defined by: </p><p>∀E ∈ F , |μ|(E) = sup <sup style="top: -1.03em;">+∞ </sup>|μ(E<sub style="top: 0.12em;">n</sub>)| </p><p>ꢁ</p><p>ꢀ</p><p>n=1 </p><p>where the ’sup’ is taken over all measurable partitions (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>of E. </p><p>Exercise 4. Let μ be a complex measure on (Ω, F). <br>1. Show that for all E ∈ F, |μ(E)| ≤ |μ|(E). 2. Show that |μ|(∅) = 0. </p><p>Exercise 5. Let μ be a complex measure on (Ω, F). Let E ∈ F and (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a measurable partition of E. </p><p>1. Show that there exists (t<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>in <strong>R</strong>, with t<sub style="top: 0.12em;">n </sub>< |μ|(E<sub style="top: 0.12em;">n</sub>) for all n. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">8</li></ul><p></p><p>2. Show that for all n ≥ 1, there exists a measurable partition <br>(E<sub style="top: 0.21em;">n</sub><sup style="top: -0.3em;">p</sup>)<sub style="top: 0.12em;">p≥1 </sub>of E<sub style="top: 0.12em;">n </sub>such that: </p><p>+∞ </p><p>ꢁ</p><p>t<sub style="top: 0.12em;">n </sub>< </p><p>|μ(E<sub style="top: 0.21em;">n</sub><sup style="top: -0.34em;">p</sup>)| </p><p>p=1 </p><p>3. Show that (E<sub style="top: 0.21em;">n</sub><sup style="top: -0.3em;">p</sup>)<sub style="top: 0.12em;">n,p≥1 </sub>is a measurable partition of E. </p><p>ꢀ</p><p>N</p><p>4. Show that for all N ≥ 1, we have <sub style="top: 0.25em;">n=1 </sub>t<sub style="top: 0.12em;">n </sub>≤ |μ|(E). 5. Show that for all N ≥ 1, we have: </p><p>N</p><p>ꢁ</p><p>|μ|(E<sub style="top: 0.12em;">n</sub>) ≤ |μ|(E) </p><p>n=1 </p><p>6. Suppose that (A<sub style="top: 0.12em;">p</sub>)<sub style="top: 0.12em;">p≥1 </sub>is another arbitrary measurable partition </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">9</li></ul><p></p><p>of E. Show that for all p ≥ 1: </p><p>|μ(A<sub style="top: 0.12em;">p</sub>)| ≤ <sup style="top: -1.04em;">+∞ </sup>|μ(A<sub style="top: 0.12em;">p </sub>∩ E<sub style="top: 0.12em;">n</sub>)| </p><p>ꢁ</p><p>n=1 </p><p>7. Show that for all n ≥ 1: </p><p><sup style="top: -1.04em;">+∞ </sup>|μ(A<sub style="top: 0.12em;">p </sub>∩ E<sub style="top: 0.12em;">n</sub>)| ≤ |μ|(E<sub style="top: 0.12em;">n</sub>) </p><p>ꢁ</p><p>p=1 </p><p>8. Show that: </p><p><sup style="top: -1.04em;">+∞ </sup>|μ(A<sub style="top: 0.12em;">p</sub>)| ≤ <sup style="top: -1.04em;">+∞ </sup>|μ|(E<sub style="top: 0.12em;">n</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">p=1 </li><li style="flex:1">n=1 </li></ul><p></p><p>9. Show that |μ| : F → [0, +∞] is a measure on (Ω, F). </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">10 </li></ul><p></p><p>Exercise 6. Let a, b ∈ <strong>R</strong>, a < b. Let F ∈ C<sup style="top: -0.3em;">1</sup>([a, b]; <strong>R</strong>), and define: </p><p>ꢇ</p><p>x</p><p>ꢀ</p><p></p><ul style="display: flex;"><li style="flex:1">∀x ∈ [a, b] , H(x) = </li><li style="flex:1">F<sup style="top: -0.35em;">ꢁ</sup>(t)dt </li></ul><p></p><p>a</p><p>1. Show that H ∈ C<sup style="top: -0.3em;">1</sup>([a, b]; <strong>R</strong>) and H<sup style="top: -0.3em;">ꢁ </sup>= F<sup style="top: -0.3em;">ꢁ</sup>. 2. Show that: </p><p>ꢇ</p><p>b</p><p>F(b) − F(a) = </p><p>F<sup style="top: -0.35em;">ꢁ</sup>(t)dt </p><p>a</p><p>3. Show that: </p><p>ꢇ</p><p>+π/2 </p><p>1</p><p>2π </p><p>1</p><p>π</p><p>cos θdθ = </p><p>−π/2 </p><p>4. Let u ∈ <strong>R</strong><sup style="top: -0.3em;">n </sup>and τ<sub style="top: 0.12em;">u </sub>: <strong>R</strong><sup style="top: -0.3em;">n </sup>→ <strong>R</strong><sup style="top: -0.3em;">n </sup>be the translation τ<sub style="top: 0.12em;">u</sub>(x) = x+u. </p><p>Show that the Lebesgue measure dx on (<strong>R</strong><sup style="top: -0.3em;">n</sup>, B(<strong>R</strong><sup style="top: -0.3em;">n</sup>)) is invariant by translation τ<sub style="top: 0.12em;">u</sub>, i.e. dx({τ<sub style="top: 0.12em;">u </sub>∈ B}) = dx(B) for all B ∈ B(<strong>R</strong><sup style="top: -0.3em;">n</sup>). </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">11 </li></ul><p></p><p>5. Show that for all f ∈ L<sup style="top: -0.3em;">1</sup><sub style="top: 0.23em;"><strong>C</strong></sub>(<strong>R</strong><sup style="top: -0.3em;">n</sup>, B(<strong>R</strong><sup style="top: -0.3em;">n</sup>), dx), and u ∈ <strong>R</strong><sup style="top: -0.3em;">n</sup>: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">f(x + u)dx = </li><li style="flex:1">f(x)dx </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>R</strong><sup style="top: -0.17em;">n </sup></li><li style="flex:1"><strong>R</strong><sup style="top: -0.17em;">n </sup></li></ul><p></p><p>6. Show that for all α ∈ <strong>R</strong>, we have: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">+π </li><li style="flex:1">+π−α </li></ul><p></p><p>cos<sup style="top: -0.34em;">+</sup>(α − θ)dθ = </p><p>cos<sup style="top: -0.34em;">+ </sup>θdθ </p><p></p><ul style="display: flex;"><li style="flex:1">−π </li><li style="flex:1">−π−α </li></ul><p></p><p>7. Let α ∈ <strong>R </strong>and k ∈ <strong>Z </strong>such that k ≤ α/2π < k + 1. Show: </p><p>−π − α ≤ −2kπ − π < π − α ≤ −2kπ + π </p><p>8. Show that: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">−2kπ−π </li><li style="flex:1">−2kπ+π </li></ul><p></p><p>cos<sup style="top: -0.34em;">+ </sup>θdθ = </p><p>cos<sup style="top: -0.34em;">+ </sup>θdθ </p><p></p><ul style="display: flex;"><li style="flex:1">−π−α </li><li style="flex:1">π−α </li></ul><p></p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">12 </li></ul><p></p><p>9. Show that: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">+π−α </li><li style="flex:1">−2kπ+π </li><li style="flex:1">+π </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">cos<sup style="top: -0.35em;">+ </sup>θdθ = </li><li style="flex:1">cos<sup style="top: -0.35em;">+ </sup>θdθ = </li></ul><p></p><p>cos<sup style="top: -0.35em;">+ </sup>θdθ </p><p></p><ul style="display: flex;"><li style="flex:1">−π−α </li><li style="flex:1">−2kπ−π </li><li style="flex:1">−π </li></ul><p></p><p>10. Show that for all α ∈ <strong>R</strong>: </p><p>ꢇ</p><p>+π </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>π</p><p>cos<sup style="top: -0.34em;">+</sup>(α − θ)dθ = </p><p>2π </p><p>−π </p><p>Exercise 7. Let z<sub style="top: 0.12em;">1</sub>, . . . , z<sub style="top: 0.12em;">N </sub>be N complex numbers. Let α<sub style="top: 0.12em;">k </sub>∈ <strong>R </strong>be such that z<sub style="top: 0.12em;">k </sub>= |z<sub style="top: 0.12em;">k</sub>|e<sup style="top: -0.3em;">iα </sup>, for all k = 1, . . . , N. For all θ ∈ [−π, +π], we </p><p>k</p><p>define S(θ) = {k = 1, . . . , N : cos(α<sub style="top: 0.12em;">k </sub>− θ) > 0}. </p><p>1. Show that for all θ ∈ [−π, +π], we have: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p>z<sub style="top: 0.12em;">k </sub></p><p>=</p><p>z<sub style="top: 0.12em;">k</sub>e<sup style="top: -0.34em;">−iθ </sup></p><p>≥</p><p>|z<sub style="top: 0.12em;">k</sub>| cos(α<sub style="top: 0.12em;">k </sub>− θ) </p><p></p><ul style="display: flex;"><li style="flex:1">k∈S(θ) </li><li style="flex:1">k∈S(θ) </li><li style="flex:1">k∈S(θ) </li></ul><p></p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">13 </li></ul><p></p><p>ꢀ</p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1">2. Define φ : [−π, +π] → <strong>R </strong>by φ(θ) = </li><li style="flex:1">|z<sub style="top: 0.12em;">k</sub>| cos<sup style="top: -0.3em;">+</sup>(α<sub style="top: 0.12em;">k </sub>− θ). </li></ul><p>Show the existence of θ<sub style="top: 0.12em;">0 </sub>∈ [−π, +π] such <sup style="top: -0.74em;">k</sup>t<sup style="top: -0.74em;">=</sup>ha<sup style="top: -0.74em;">1</sup>t: </p><p>φ(θ<sub style="top: 0.12em;">0</sub>) = sup φ(θ) </p><p>θ∈[−π,+π] </p><p>3. Show that: </p><p>ꢇ</p><p>N<br>+π </p><p>ꢁ</p><p>1</p><p>2π </p><p>1</p><p>πφ(θ)dθ = </p><p>|z<sub style="top: 0.12em;">k</sub>| </p><p>−π </p><p>k=1 </p><p>4. Conclude that: </p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p>1</p><p>π</p><p>|z<sub style="top: 0.12em;">k</sub>| ≤ </p><p>z<sub style="top: 0.12em;">k </sub></p><p>k=1 </p><p>k∈S(θ<sub style="top: 0.08em;">0</sub>) </p><p>Exercise 8. Let μ ∈ M<sup style="top: -0.2998em;">1</sup>(Ω, F). Suppose that |μ|(E) = +∞ for some E ∈ F. Define t = π(1 + |μ(E)|) ∈ <strong>R</strong><sup style="top: -0.3em;">+</sup>. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">14 </li></ul><p></p><p>1. Show that there is a measurable partition (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>of E, with: </p><p>t < <sup style="top: -1.04em;">+∞ </sup>|μ(E<sub style="top: 0.12em;">n</sub>)| </p><p>ꢁ</p><p>n=1 </p><p>2. Show the existence of N ≥ 1 such that: </p><p>N</p><p>ꢁ</p><p>t < </p><p>|μ(E<sub style="top: 0.12em;">n</sub>)| </p><p>n=1 </p><p>3. Show the existence of S ⊆ {1, . . . , N} such that: </p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p>|μ(E<sub style="top: 0.12em;">n</sub>)| ≤ π </p><p>μ(E<sub style="top: 0.12em;">n</sub>) </p><p>n=1 </p><p>n∈S </p><p>4. Show that |μ(A)| > t/π, where A = ꢀ<sub style="top: 0.12em;">n∈S</sub>E<sub style="top: 0.12em;">n</sub>. 5. Let B = E \ A. Show that |μ(B)| ≥ |μ(A)| − |μ(E)|. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">15 </li></ul><p></p><p>6. Show that E = A ꢀ B with |μ(A)| > 1 and |μ(B)| > 1. 7. Show that |μ|(A) = +∞ or |μ|(B) = +∞. </p><p>Exercise 9. Let μ ∈ M<sup style="top: -0.3em;">1</sup>(Ω, F). Suppose that |μ|(Ω) = +∞. <br>1. Show the existence of A<sub style="top: 0.12em;">1</sub>, B<sub style="top: 0.12em;">1 </sub>∈ F, such that Ω = A<sub style="top: 0.12em;">1 </sub>ꢀ B<sub style="top: 0.12em;">1</sub>, <br>|μ(A<sub style="top: 0.12em;">1</sub>)| > 1 and |μ|(B<sub style="top: 0.12em;">1</sub>) = +∞. </p><p>2. Show the existence of a sequence (A<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>of pairwise disjoint elements of F, such that |μ(A<sub style="top: 0.12em;">n</sub>)| > 1 for all n ≥ 1. </p><p>ꢀ</p><p>+∞ </p><p>3. Show that the series where A = ꢀ<sub style="top: 0.22em;">n=1 </sub></p><p><sup style="top: -0.35em;">+∞ </sup>A<sub style="top: 0.12em;">n</sub>. </p><p><sub style="top: 0.25em;">n=1 </sub>μ(A<sub style="top: 0.12em;">n</sub>) does not converge to μ(A) <br>4. Conclude that |μ|(Ω) < +∞. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">16 </li></ul><p></p><p><strong>Theorem 57 </strong>Let μ be a complex measure on a measurable space </p><p>(Ω, F). Then, its total variation |μ| is a finite measure on (Ω, F). </p><p>Exercise 10. Show that M<sup style="top: -0.3em;">1</sup>(Ω, F) is a <strong>C</strong>-vector space, with: </p><p>ꢀ</p><p></p><ul style="display: flex;"><li style="flex:1">(λ + μ)(E) </li><li style="flex:1">=</li><li style="flex:1">λ(E) + μ(E) </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages18 Page
-
File Size-