Complex Measures 1 11

Complex Measures 1 11

<p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">1</li></ul><p></p><p><strong>11. Complex&nbsp;Measures </strong></p><p>In the following, (Ω, F) denotes an arbitrary measurable space. </p><p><strong>Definition 90&nbsp;</strong>Let (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a sequence of complex numbers. We </p><p>say that (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>has the <strong>permutation property </strong>if and only if, for </p><p>ꢀ</p><p>+∞ </p><p>all bijections σ : <strong>N</strong><sup style="top: -0.36em;">∗ </sup>→ <strong>N</strong><sup style="top: -0.3em;">∗</sup>, the series </p><p>a</p><p>converges in <strong>C</strong><sup style="top: -0.3em;">1 </sup></p><p>σ(k) k=1 </p><p>Exercise 1. Let (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a sequence of complex numbers. <br>1. Show that if (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>has the permutation property, then the </p><ul style="display: flex;"><li style="flex:1">same is true of (Re(a<sub style="top: 0.12em;">n</sub>))<sub style="top: 0.12em;">n≥1 </sub>and (Im(a<sub style="top: 0.12em;">n</sub>))<sub style="top: 0.12em;">n≥1 </sub></li><li style="flex:1">.</li></ul><p></p><p>ꢀ</p><p>2. Suppose&nbsp;a<sub style="top: 0.12em;">n </sub>∈ <strong>R </strong>for all n ≥ 1. Show that if&nbsp;<sup style="top: -0.41em;">+∞ </sup>a<sub style="top: 0.12em;">k </sub>converges: </p><p>k=1 </p><p></p><ul style="display: flex;"><li style="flex:1">+∞ </li><li style="flex:1">+∞ </li></ul><p></p><p><sup style="top: -1.03em;">+∞ </sup>|a<sub style="top: 0.12em;">k</sub>| = +∞ ⇒ </p><p>a<sub style="top: 0.25em;">k</sub><sup style="top: -0.35em;">+ </sup></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">a<sup style="top: -0.35em;">−</sup><sub style="top: 0.25em;">k </sub>= +∞ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li></ul><p></p><p><sup style="top: -0.24em;">1</sup>which excludes&nbsp;∞ as limit. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">2</li></ul><p></p><p>Exercise 2. Let (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a sequence in <strong>R</strong>, such that the series </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p><sup style="top: -0.41em;">+∞ </sup>a<sub style="top: 0.12em;">k </sub>converges, and&nbsp;<sup style="top: -0.41em;">+∞ </sup>|a<sub style="top: 0.12em;">k</sub>| = +∞. Let A &gt; 0. We define: </p><p></p><ul style="display: flex;"><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p>N<sup style="top: -0.34em;">+ </sup>= {k ≥ 1 : a<sub style="top: 0.12em;">k </sub>≥ 0} , N<sup style="top: -0.34em;">− </sup>= {k ≥ 1 : a<sub style="top: 0.12em;">k </sub>&lt; 0} </p><p>1. Show&nbsp;that N<sup style="top: -0.3em;">+ </sup>and N<sup style="top: -0.3em;">− </sup>are infinite. 2. Let&nbsp;φ<sup style="top: -0.3em;">+ </sup>: <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ N<sup style="top: -0.3em;">+ </sup>and φ<sup style="top: -0.3em;">− </sup>: <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ N<sup style="top: -0.3em;">− </sup>be two bijections.&nbsp;Show the existence of k<sub style="top: 0.12em;">1 </sub>≥ 1 such that: </p><p>k<sub style="top: 0.08em;">1 </sub></p><p>ꢁ</p><p>a<sub style="top: 0.15em;">φ</sub><sub style="top: -0.16em;">+ </sub>≥ A </p><p>(k) k=1 </p><p>3. Show&nbsp;the existence of an increasing sequence (k<sub style="top: 0.12em;">p</sub>)<sub style="top: 0.12em;">p≥1 </sub>such that: </p><p>k<sub style="top: 0.08em;">p </sub></p><p>ꢁ</p><p>a<sub style="top: 0.15em;">φ</sub><sub style="top: -0.16em;">+ </sub>≥ A </p><p>(k) k=k<sub style="top: 0.08em;">p−1</sub>+1 </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">3</li></ul><p></p><p>for all p ≥ 1, where k<sub style="top: 0.12em;">0 </sub>= 0. <br>4. Consider&nbsp;the permutation σ : <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ <strong>N</strong><sup style="top: -0.3em;">∗ </sup>defined informally by: </p><p>(φ<sup style="top: -0.34em;">−</sup>(1), φ<sup style="top: -0.34em;">+</sup>(1), . . . , φ<sup style="top: -0.34em;">+</sup>(k<sub style="top: 0.12em;">1</sub>), φ<sup style="top: -0.34em;">−</sup>(2), φ<sup style="top: -0.34em;">+</sup>(k<sub style="top: 0.12em;">1 </sub>+ 1), . . . , φ<sup style="top: -0.34em;">+</sup>(k<sub style="top: 0.12em;">2</sub>), . . .) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃꢄ </li><li style="flex:1">ꢅ</li><li style="flex:1">ꢂ</li><li style="flex:1">ꢃꢄ </li><li style="flex:1">ꢅ</li></ul><p></p><p>representing (σ(1), σ(2), . . .). More&nbsp;specifically, define k<sub style="top: 0.21em;">0</sub><sup style="top: -0.3em;">∗ </sup>= 0 </p><p>2</p><p>and k<sub style="top: 0.2em;">p</sub><sup style="top: -0.3em;">∗ </sup>= k<sub style="top: 0.12em;">p </sub>+ p for all p ≥ 1. For all n ∈ <strong>N</strong><sup style="top: -0.3em;">∗ </sup>and p ≥ 1 with: </p><p>k<sub style="top: 0.21em;">p</sub><sup style="top: -0.34em;">∗</sup><sub style="top: 0.21em;">−1 </sub>&lt; n ≤ k<sub style="top: 0.21em;">p</sub><sup style="top: -0.34em;">∗ </sup></p><p>(1) we define: </p><p>ꢆ</p><p></p><ul style="display: flex;"><li style="flex:1">φ<sup style="top: -0.2999em;">−</sup>(p) </li><li style="flex:1">if n = k<sub style="top: 0.21em;">p</sub><sup style="top: -0.3em;">∗</sup><sub style="top: 0.21em;">−1 </sub>+ 1 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">σ(n) = </li><li style="flex:1">(2) </li></ul><p></p><p>φ<sup style="top: -0.3em;">+</sup>(n − p) if n &gt; k<sub style="top: 0.21em;">p</sub><sup style="top: -0.3em;">∗</sup><sub style="top: 0.21em;">−1 </sub>+ 1 </p><p>Show that σ : <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ <strong>N</strong><sup style="top: -0.3em;">∗ </sup>is indeed a bijection. </p><p><sup style="top: -0.23em;">2</sup>Given an integer n ≥ 1, there exists a unique p ≥ 1 such that (1) holds. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">4</li></ul><p></p><p>ꢀ</p><p>+∞ </p><p>5. Show&nbsp;that if </p><p>a</p><p>converges, there is N ≥ 1, such that: </p><p>σ(k) k=1 </p><p>n+p </p><p>ꢁ</p><p>n ≥ N , p&nbsp;≥ 1 ⇒ a<sub style="top: 0.15em;">σ(k) </sub>&lt; A </p><p>k=n+1 </p><p>6. Explain&nbsp;why (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>cannot have the permutation property. 7. Prove&nbsp;the following theorem: </p><p><strong>Theorem 56&nbsp;</strong>Let (a<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a sequence of complex numbers such </p><p>ꢀ</p><p>+∞ </p><p>that for all bijections σ : <strong>N</strong><sup style="top: -0.3em;">∗ </sup>→ <strong>N</strong><sup style="top: -0.3em;">∗</sup>, the series </p><p>k=1 </p><p>a</p><p>converges. </p><p>σ(k) k=1 </p><p>ꢀ</p><p>Then, the series&nbsp;<sup style="top: -0.42em;">+∞ </sup>a<sub style="top: 0.12em;">k </sub>converges absolutely, i.e. </p><p><sup style="top: -1.04em;">+∞ </sup>|a<sub style="top: 0.12em;">k</sub>| &lt; +∞ </p><p>ꢁ</p><p>k=1 </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">5</li></ul><p></p><p><strong>Definition 91&nbsp;</strong>Let (Ω, F) be a measurable space and E ∈ F. We </p><p>call <strong>measurable partition </strong>of E, any sequence (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>of pairwise </p><p>disjoint elements of F, such that E = ꢀ<sub style="top: 0.12em;">n≥1</sub>E<sub style="top: 0.12em;">n</sub>. </p><p><strong>Definition 92&nbsp;</strong>We call <strong>complex measure </strong>on a measurable space </p><p>(Ω, F) any map μ : F → <strong>C</strong>, such that for all E ∈ F and (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub></p><p>ꢀ</p><p>+∞ </p><p>measurable partition of E, the series&nbsp;<sub style="top: 0.25em;">n=1 </sub>μ(E<sub style="top: 0.12em;">n</sub>) converges to μ(E). The set of all complex measures on (Ω, F) is denoted M<sup style="top: -0.3em;">1</sup>(Ω, F). </p><p><strong>Definition 93&nbsp;</strong>We call <strong>signed measure </strong>on a measurable space </p><p>(Ω, F), any complex measure on (Ω, F) with values in <strong>R</strong>.<sup style="top: -0.3em;">3 </sup></p><p>Exercise 3. </p><p>1. Show&nbsp;that a measure on (Ω, F) may not be a complex measure. 2. Show&nbsp;that for all μ ∈ M<sup style="top: -0.3em;">1</sup>(Ω, F) , μ(∅) = 0. </p><p><sup style="top: -0.23em;">3</sup>In these tutorials, signed measure may not have values in {−∞, +∞}. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">6</li></ul><p></p><p>3. Show&nbsp;that a finite measure on (Ω, F) is a complex measure with values in <strong>R</strong><sup style="top: -0.3em;">+</sup>, and conversely. </p><p>4. Let μ ∈ M<sup style="top: -0.3em;">1</sup>(Ω, F). Let&nbsp;E ∈ F and (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a measurable partition of E. Show that: </p><p><sup style="top: -1.03em;">+∞ </sup>|μ(E<sub style="top: 0.12em;">n</sub>)| &lt; +∞ </p><p>ꢁ</p><p>n=1 </p><p>5. Let&nbsp;μ be a measure on (Ω, F) and f ∈ L<sup style="top: -0.3em;">1</sup><sub style="top: 0.24em;"><strong>C</strong></sub>(Ω, F, μ). Define: </p><p>ꢇ</p><p>ꢀ</p><p>∀E ∈ F&nbsp;, ν(E) = </p><p>fdμ </p><p>E</p><p>Show that ν is a complex measure on (Ω, F). </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">7</li></ul><p></p><p><strong>Definition 94&nbsp;</strong>Let μ be a complex measure on a measurable space </p><p>(Ω, F). We&nbsp;call <strong>total variation </strong>of μ, the map |μ| : F → [0, +∞], </p><p>defined by: </p><p>∀E ∈ F&nbsp;, |μ|(E) = sup <sup style="top: -1.03em;">+∞ </sup>|μ(E<sub style="top: 0.12em;">n</sub>)| </p><p>ꢁ</p><p>ꢀ</p><p>n=1 </p><p>where the ’sup’ is taken over all measurable partitions (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>of E. </p><p>Exercise 4. Let μ be a complex measure on (Ω, F). <br>1. Show&nbsp;that for all E ∈ F, |μ(E)| ≤ |μ|(E). 2. Show&nbsp;that |μ|(∅) = 0. </p><p>Exercise 5. Let μ be a complex measure on (Ω, F). Let E ∈ F and (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>be a measurable partition of E. </p><p>1. Show&nbsp;that there exists (t<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>in <strong>R</strong>, with t<sub style="top: 0.12em;">n </sub>&lt; |μ|(E<sub style="top: 0.12em;">n</sub>) for all n. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">8</li></ul><p></p><p>2. Show that for all n ≥ 1, there exists a measurable partition <br>(E<sub style="top: 0.21em;">n</sub><sup style="top: -0.3em;">p</sup>)<sub style="top: 0.12em;">p≥1 </sub>of E<sub style="top: 0.12em;">n </sub>such that: </p><p>+∞ </p><p>ꢁ</p><p>t<sub style="top: 0.12em;">n </sub>&lt; </p><p>|μ(E<sub style="top: 0.21em;">n</sub><sup style="top: -0.34em;">p</sup>)| </p><p>p=1 </p><p>3. Show&nbsp;that (E<sub style="top: 0.21em;">n</sub><sup style="top: -0.3em;">p</sup>)<sub style="top: 0.12em;">n,p≥1 </sub>is a measurable partition of E. </p><p>ꢀ</p><p>N</p><p>4. Show&nbsp;that for all N ≥ 1, we have&nbsp;<sub style="top: 0.25em;">n=1 </sub>t<sub style="top: 0.12em;">n </sub>≤ |μ|(E). 5. Show&nbsp;that for all N ≥ 1, we have: </p><p>N</p><p>ꢁ</p><p>|μ|(E<sub style="top: 0.12em;">n</sub>) ≤ |μ|(E) </p><p>n=1 </p><p>6. Suppose&nbsp;that (A<sub style="top: 0.12em;">p</sub>)<sub style="top: 0.12em;">p≥1 </sub>is another arbitrary measurable partition </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">9</li></ul><p></p><p>of E. Show that for all p ≥ 1: </p><p>|μ(A<sub style="top: 0.12em;">p</sub>)| ≤ <sup style="top: -1.04em;">+∞ </sup>|μ(A<sub style="top: 0.12em;">p </sub>∩ E<sub style="top: 0.12em;">n</sub>)| </p><p>ꢁ</p><p>n=1 </p><p>7. Show&nbsp;that for all n ≥ 1: </p><p><sup style="top: -1.04em;">+∞ </sup>|μ(A<sub style="top: 0.12em;">p </sub>∩ E<sub style="top: 0.12em;">n</sub>)| ≤ |μ|(E<sub style="top: 0.12em;">n</sub>) </p><p>ꢁ</p><p>p=1 </p><p>8. Show&nbsp;that: </p><p><sup style="top: -1.04em;">+∞ </sup>|μ(A<sub style="top: 0.12em;">p</sub>)| ≤ <sup style="top: -1.04em;">+∞ </sup>|μ|(E<sub style="top: 0.12em;">n</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">p=1 </li><li style="flex:1">n=1 </li></ul><p></p><p>9. Show&nbsp;that |μ| : F → [0, +∞] is a measure on (Ω, F). </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">10 </li></ul><p></p><p>Exercise 6. Let a, b ∈ <strong>R</strong>, a &lt; b. Let F ∈ C<sup style="top: -0.3em;">1</sup>([a, b]; <strong>R</strong>), and define: </p><p>ꢇ</p><p>x</p><p>ꢀ</p><p></p><ul style="display: flex;"><li style="flex:1">∀x ∈ [a, b] , H(x) = </li><li style="flex:1">F<sup style="top: -0.35em;">ꢁ</sup>(t)dt </li></ul><p></p><p>a</p><p>1. Show&nbsp;that H ∈ C<sup style="top: -0.3em;">1</sup>([a, b]; <strong>R</strong>) and H<sup style="top: -0.3em;">ꢁ </sup>= F<sup style="top: -0.3em;">ꢁ</sup>. 2. Show&nbsp;that: </p><p>ꢇ</p><p>b</p><p>F(b) − F(a) = </p><p>F<sup style="top: -0.35em;">ꢁ</sup>(t)dt </p><p>a</p><p>3. Show&nbsp;that: </p><p>ꢇ</p><p>+π/2 </p><p>1</p><p>2π </p><p>1</p><p>π</p><p>cos θdθ = </p><p>−π/2 </p><p>4. Let&nbsp;u ∈ <strong>R</strong><sup style="top: -0.3em;">n </sup>and τ<sub style="top: 0.12em;">u </sub>: <strong>R</strong><sup style="top: -0.3em;">n </sup>→ <strong>R</strong><sup style="top: -0.3em;">n </sup>be the translation τ<sub style="top: 0.12em;">u</sub>(x) = x+u. </p><p>Show that the Lebesgue measure dx on (<strong>R</strong><sup style="top: -0.3em;">n</sup>, B(<strong>R</strong><sup style="top: -0.3em;">n</sup>)) is invariant by translation τ<sub style="top: 0.12em;">u</sub>, i.e.&nbsp;dx({τ<sub style="top: 0.12em;">u </sub>∈ B}) = dx(B) for all B ∈ B(<strong>R</strong><sup style="top: -0.3em;">n</sup>). </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">11 </li></ul><p></p><p>5. Show&nbsp;that for all f ∈ L<sup style="top: -0.3em;">1</sup><sub style="top: 0.23em;"><strong>C</strong></sub>(<strong>R</strong><sup style="top: -0.3em;">n</sup>, B(<strong>R</strong><sup style="top: -0.3em;">n</sup>), dx), and u ∈ <strong>R</strong><sup style="top: -0.3em;">n</sup>: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">f(x + u)dx = </li><li style="flex:1">f(x)dx </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>R</strong><sup style="top: -0.17em;">n </sup></li><li style="flex:1"><strong>R</strong><sup style="top: -0.17em;">n </sup></li></ul><p></p><p>6. Show&nbsp;that for all α ∈ <strong>R</strong>, we have: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">+π </li><li style="flex:1">+π−α </li></ul><p></p><p>cos<sup style="top: -0.34em;">+</sup>(α − θ)dθ = </p><p>cos<sup style="top: -0.34em;">+ </sup>θdθ </p><p></p><ul style="display: flex;"><li style="flex:1">−π </li><li style="flex:1">−π−α </li></ul><p></p><p>7. Let&nbsp;α ∈ <strong>R </strong>and k ∈ <strong>Z </strong>such that k ≤ α/2π &lt; k + 1.&nbsp;Show: </p><p>−π − α ≤ −2kπ − π &lt; π − α ≤ −2kπ + π </p><p>8. Show&nbsp;that: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">−2kπ−π </li><li style="flex:1">−2kπ+π </li></ul><p></p><p>cos<sup style="top: -0.34em;">+ </sup>θdθ = </p><p>cos<sup style="top: -0.34em;">+ </sup>θdθ </p><p></p><ul style="display: flex;"><li style="flex:1">−π−α </li><li style="flex:1">π−α </li></ul><p></p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">12 </li></ul><p></p><p>9. Show&nbsp;that: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li><li style="flex:1">ꢇ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">+π−α </li><li style="flex:1">−2kπ+π </li><li style="flex:1">+π </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">cos<sup style="top: -0.35em;">+ </sup>θdθ = </li><li style="flex:1">cos<sup style="top: -0.35em;">+ </sup>θdθ = </li></ul><p></p><p>cos<sup style="top: -0.35em;">+ </sup>θdθ </p><p></p><ul style="display: flex;"><li style="flex:1">−π−α </li><li style="flex:1">−2kπ−π </li><li style="flex:1">−π </li></ul><p></p><p>10. Show&nbsp;that for all α ∈ <strong>R</strong>: </p><p>ꢇ</p><p>+π </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>π</p><p>cos<sup style="top: -0.34em;">+</sup>(α − θ)dθ = </p><p>2π </p><p>−π </p><p>Exercise 7. Let z<sub style="top: 0.12em;">1</sub>, . . . , z<sub style="top: 0.12em;">N </sub>be N complex numbers. Let α<sub style="top: 0.12em;">k </sub>∈ <strong>R </strong>be such that z<sub style="top: 0.12em;">k </sub>= |z<sub style="top: 0.12em;">k</sub>|e<sup style="top: -0.3em;">iα </sup>, for all k = 1, . . . , N. For all θ ∈ [−π, +π], we </p><p>k</p><p>define S(θ) = {k = 1, . . . , N&nbsp;: cos(α<sub style="top: 0.12em;">k </sub>− θ) &gt; 0}. </p><p>1. Show&nbsp;that for all θ ∈ [−π, +π], we have: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p>z<sub style="top: 0.12em;">k </sub></p><p>=</p><p>z<sub style="top: 0.12em;">k</sub>e<sup style="top: -0.34em;">−iθ </sup></p><p>≥</p><p>|z<sub style="top: 0.12em;">k</sub>| cos(α<sub style="top: 0.12em;">k </sub>− θ) </p><p></p><ul style="display: flex;"><li style="flex:1">k∈S(θ) </li><li style="flex:1">k∈S(θ) </li><li style="flex:1">k∈S(θ) </li></ul><p></p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">13 </li></ul><p></p><p>ꢀ</p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1">2. Define φ : [−π, +π] → <strong>R </strong>by φ(θ) = </li><li style="flex:1">|z<sub style="top: 0.12em;">k</sub>| cos<sup style="top: -0.3em;">+</sup>(α<sub style="top: 0.12em;">k </sub>− θ). </li></ul><p>Show the existence of θ<sub style="top: 0.12em;">0 </sub>∈ [−π, +π] such <sup style="top: -0.74em;">k</sup>t<sup style="top: -0.74em;">=</sup>ha<sup style="top: -0.74em;">1</sup>t: </p><p>φ(θ<sub style="top: 0.12em;">0</sub>) =&nbsp;sup φ(θ) </p><p>θ∈[−π,+π] </p><p>3. Show&nbsp;that: </p><p>ꢇ</p><p>N<br>+π </p><p>ꢁ</p><p>1</p><p>2π </p><p>1</p><p>πφ(θ)dθ = </p><p>|z<sub style="top: 0.12em;">k</sub>| </p><p>−π </p><p>k=1 </p><p>4. Conclude&nbsp;that: </p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p>1</p><p>π</p><p>|z<sub style="top: 0.12em;">k</sub>| ≤ </p><p>z<sub style="top: 0.12em;">k </sub></p><p>k=1 </p><p>k∈S(θ<sub style="top: 0.08em;">0</sub>) </p><p>Exercise 8.&nbsp;Let μ ∈ M<sup style="top: -0.2998em;">1</sup>(Ω, F). Suppose&nbsp;that |μ|(E) = +∞ for some E ∈ F. Define t = π(1 + |μ(E)|) ∈ <strong>R</strong><sup style="top: -0.3em;">+</sup>. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">14 </li></ul><p></p><p>1. Show&nbsp;that there is a measurable partition (E<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>of E, with: </p><p>t &lt; <sup style="top: -1.04em;">+∞ </sup>|μ(E<sub style="top: 0.12em;">n</sub>)| </p><p>ꢁ</p><p>n=1 </p><p>2. Show&nbsp;the existence of N ≥ 1 such that: </p><p>N</p><p>ꢁ</p><p>t &lt; </p><p>|μ(E<sub style="top: 0.12em;">n</sub>)| </p><p>n=1 </p><p>3. Show&nbsp;the existence of S ⊆ {1, . . . , N} such that: </p><p>N</p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢁ</li></ul><p></p><p>|μ(E<sub style="top: 0.12em;">n</sub>)| ≤ π </p><p>μ(E<sub style="top: 0.12em;">n</sub>) </p><p>n=1 </p><p>n∈S </p><p>4. Show&nbsp;that |μ(A)| &gt; t/π, where A = ꢀ<sub style="top: 0.12em;">n∈S</sub>E<sub style="top: 0.12em;">n</sub>. 5. Let&nbsp;B = E \ A. Show that |μ(B)| ≥ |μ(A)| − |μ(E)|. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">15 </li></ul><p></p><p>6. Show&nbsp;that E = A ꢀ B with |μ(A)| &gt; 1 and |μ(B)| &gt; 1. 7. Show&nbsp;that |μ|(A) = +∞ or |μ|(B) = +∞. </p><p>Exercise 9. Let μ ∈ M<sup style="top: -0.3em;">1</sup>(Ω, F). Suppose that |μ|(Ω) = +∞. <br>1. Show the existence of A<sub style="top: 0.12em;">1</sub>, B<sub style="top: 0.12em;">1 </sub>∈ F, such that Ω = A<sub style="top: 0.12em;">1 </sub>ꢀ B<sub style="top: 0.12em;">1</sub>, <br>|μ(A<sub style="top: 0.12em;">1</sub>)| &gt; 1 and |μ|(B<sub style="top: 0.12em;">1</sub>) = +∞. </p><p>2. Show the existence of a sequence (A<sub style="top: 0.12em;">n</sub>)<sub style="top: 0.12em;">n≥1 </sub>of pairwise disjoint elements of F, such that |μ(A<sub style="top: 0.12em;">n</sub>)| &gt; 1 for all n ≥ 1. </p><p>ꢀ</p><p>+∞ </p><p>3. Show that the series where A = ꢀ<sub style="top: 0.22em;">n=1 </sub></p><p><sup style="top: -0.35em;">+∞ </sup>A<sub style="top: 0.12em;">n</sub>. </p><p><sub style="top: 0.25em;">n=1 </sub>μ(A<sub style="top: 0.12em;">n</sub>) does not converge to μ(A) <br>4. Conclude&nbsp;that |μ|(Ω) &lt; +∞. </p><p><a href="/goto?url=http://www.probability.net" target="_blank">www.probability.net </a></p><p></p><ul style="display: flex;"><li style="flex:1">Tutorial 11: Complex Measures </li><li style="flex:1">16 </li></ul><p></p><p><strong>Theorem 57&nbsp;</strong>Let μ be a complex measure on a measurable space </p><p>(Ω, F). Then, its total variation |μ| is a finite measure on (Ω, F). </p><p>Exercise 10. Show that M<sup style="top: -0.3em;">1</sup>(Ω, F) is a <strong>C</strong>-vector space, with: </p><p>ꢀ</p><p></p><ul style="display: flex;"><li style="flex:1">(λ + μ)(E) </li><li style="flex:1">=</li><li style="flex:1">λ(E) + μ(E) </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us