Biomass Estiomation Using Lidar Data

Biomass Estiomation Using Lidar Data

Biomass estiomation using LiDAR data University of the Basque Country Leyre Torre Index 1. Introduction 2. Objective 3. LiDAR 4. Biomass estimation 4.1 Study area 4.2 National Forestal Inventory 4 (NFI 4) 4.3 Field plots positioning 4.4 LiDAR data 4.5 Multiple regression technique 4.6 Results 4.7 Conclusions 5. Practical Examples 1. Introduction IPCC, 2001 1. Introduction The main gas responsible for the greenhouse effect is carbon dioxide (CO2), which concentrations have been seriously altered by humans in the carbon cycle. The deforestation causes big effects in the carbon cycle because of the loss of the photosynthetic ability of the eliminated forest vegetation and the simultaneous liberation of big quantities of carbon accumulated in the forest ecosystems for a long time. The sustainable development of the silviculture can contribute to mitigate the climate change in the long term, because it avoids the insertion of new carbon in the active cycle. The quantity of carbon retained in the biomass is one of the important aspects in the carbon cycle and it can be easily calculated from the dry biomass of the forest species. 2. Objective Estimate above ground biomass for Pinus Radiata in the Arratia-Nervión region, evaluating the suitability of the LiDAR data provided for the entire Spanish territory in the frame of the National Plan of Aerial Orthophotography (PNOA) with a low sampling density of 0.5 pulse/m2. 3. LiDAR 3. LiDAR 3. LiDAR 4. Biomass estimation 4.1. Study area: -3.51 -3.28 -3.06 -2.83 -2.61 -2.38 FRANCE ARRATIA-NERVIÓN .54 .54 43 PORTUGAL 43 SPAIN CANTABRIAN SEA .32 .32 43 43 BIZKAIA ± ARRATIA-NERVION GIPUZKOA .09 .09 43 43 ARRATIA-NERVION ARABA / ÁLAVA .87 .87 42 42 10 Km -3.51 -3.28 -3.06 -2.83 -2.61 -2.38 Arratia-Nervión región in Biscay, Basque Country 4. Biomass estimation 4.2 National Forestal Inventory 4 (NFI 4) 118 nested plots of 25 m 470000 495000 520000 545000 570000 radius (0.2 ha) IFN4 Plots ARRATIA-NERVION 4825000 BISCAY 4825000 4800000 4800000 4775000 4775000 ± 10 Km 470000 495000 520000 545000 570000 4. Biomass estimation 4.2 National Forestal Inventory 4 (NFI 4) 500000 510000 520000 530000 Biomasa observada (ton/ha) <50 ton/ha Arrankudiaga ¯ 50 - 150 ton/ha From the 118 plots 150-250 ton/ha Ugao-Miraballes >250 ton/ha Igorre 4780000 located in the Municipios 4780000 Área de estudio Arantzazu Arakaldo Zeberio selected region, BIZKAIA Artea only the ones where Dima ARRATIA-NERVION the dominant specie Areatza was Pinus Radiata Orozko 4770000 4770000 with> 80% Zeanuri occupation were Otxandio selected (63 Ubide samples). Urduña / Orduña ARABA BIZKAIA 8.5 4760000 km 4760000 500000 510000 520000 530000 2 1.023 2 2 푊 푡표푛 = 0.0009892 푑 ℎ − 0.00434푑 ℎ + 61.57 − 6.978푑 + 0.3463푑 ( ) (Canga et al. 2013) ℎ푎 4. Biomass estimation 4.3 Field plots positioning 4. Biomass estimation 4.4 LiDAR data - Collected between the 12th July to 28th August 2012 LiDAR flight parametrers Scan angle 60 ° Pulse Repetition Rate (PRR) 100 kHz Scan frequency 70 kHz Divergence <0.5 mrad Speed 51.4 m/s Point density 0.5 points/ m2 Height 1500 m 4. Biomass estimation 4.4 LiDAR data Flow chart of the LiDAR data 4. Biomass estimation 4.4 LiDAR data The algorithm developed to calculate the canopy density metrics divided the point clouds into 10 vertical layers of equal height, setting the low limit on 2m, to avoid shrubs and the upper limit as the percentile 95 of the height distributions. The routine calculates the proportion of points of the total number of points contained above each layer, so 10 canopy densities were computed (tr_1...tr_10). 4. Biomass estimation 4.5 Multiple regression technique 푦ො = 푏0 + 푏1푥1 + ⋯ + 푏푘푥푘 1. Correlation matrix between observed biomass and the obtained metrics 2. Two variable or three variable combinations 3. R2 (coefficient of determination ) 4. Principles of the lineal regression technique 4. Biomass estimation 4.6 Results 0 1 2 3 4 5 6 7 8 0 1.00 0.99 0.99 0.97 0.96 0.98 0.98 0.98 0.98 1 0.00 1.00 0.99 0.96 0.94 0.95 0.95 0.97 0.98 2 0.00 0.00 1.00 0.98 0.95 0.95 0.95 0.96 0.96 3 0.00 0.02 0.00 1.00 0.98 0.98 0.94 0.93 0.91 4 0.00 0.00 0.00 0.00 1.00 0.98 0.94 0.93 0.91 5 0.00 0.00 0.00 0.00 0.02 1.00 0.98 0.97 0.95 6 0.00 0.00 0.02 0.00 0.02 0.02 1.00 0.99 0.96 7 0.00 0.00 0.00 0.00 0.00 0.02 0.02 1.00 0.98 8 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Cohen concordance test for parcel 443 4. Biomass estimation 4.6 Results R^2 Shapiro- Breustch- Durbin- Variables R^2 ajus. SE Wilk Pagan Watson VIF RESET Bonferroni 1 Elev P99-(All returns above mean) / (Total first returns) 0.77 0.76 0.26 0.10 0.12 0.54 1.28 0.62 0.04 * 100 2 Elev P95-(All returns above mean) / (Total first returns) 0.77 0.76 0.26 0.07 0.23 0.55 1.27 0.64 0.06 * 100 3 Elev P95-tr_30 0.76 0.75 0.26 0.30 0.24 0.54 1.11 0.25 0.05 4 Total return count above 0.76 0.75 0.26 0.13 0.19 0.69 1.10 0.96 0.05 2.00-Elev P95 5 Elev P95-(All returns above 2.00) / (Total first returns) * 0.76 0.75 0.26 0.18 0.20 0.61 1.12 0.49 0.05 100 6 Elev P95-tr_20 0.76 0.75 0.26 0.10 0.23 0.58 1.10 0.28 0.06 7 Elev P95-tr_10 0.76 0.75 0.26 0.18 0.20 0.60 1.11 0.51 0.05 8 Elev P95-tr_40 0.76 0.75 0.26 0.08 0.23 0.52 1.14 0.14 0.05 9 Elev P90-(All returns above mean) / (Total first returns) 0.76 0.75 0.26 0.03 0.29 0.57 1.27 0.56 0.05 * 100- Results of the best models 4. Biomass estimation 4.6 Results lnBiomass=3.237172+(0.063358∙p95)+ 0.475342 ∙ 푡푟_3 The mathematical transformation from logarithmic to arithmetic values implies certain asymmetry in the distribution of the arithmetic values that can produce a sub estimation of the biomass, so a correction factor depending on the standard error estimation of the model should be applied: 푆퐸퐸2 퐹퐶 = 푒 2 =1.034162913 (3.237172+ 0.063358∙푝95 + 0.475342∙푡푟 퐵표푚푎푠푠 푡표푛 = 1.034162913 ∗ 푒 3 ℎ푎 4. Biomass estimation 4.6 Results lm(lnBiomasa.ton.ha ~ Elev.P95 + tr_30) Residuals vs Fitted Normal Q-Q 24 2 24 0.4 1 0 0.0 Residuals -1 -0.4 11 15 15 11 -2 Standardized residuals Standardized 4.0 4.5 5.0 5.5 -2 -1 0 1 2 Fitted values Theoretical Quantiles s l Scale-Location Residuals vs Leverage a u 15 24 11 2 d i 53 s 1.2 36 e 1 r d e 0 z i 0.6 d r -1 a d n Cook's distance -2 a 15 t 0.0 S Standardized residuals Standardized 4.0 4.5 5.0 5.5 0.00 0.05 0.10 0.15 Fitted values Leverage Extensive diagnostics graphics for the chosen model 4. Biomass estimation 4.6 Results 490000 500000 510000 520000 530000 Estimated Biomass < 50 ton/ha 50-150 ton/ha 150-250 ton/ha ArrankudiagaUgao-Miraballes > 250 ton/ha Igorre 4780000 4780000 Arantzazu Arakaldo Zeberio Artea Dima Areatza Orozko 4770000 4770000 Zeanuri Limitadua / El Limitado Otxandio Ubide Urduña / Orduña ± 4760000 5 4760000 Km 490000 500000 510000 520000 530000 Estimated biomass of the sample plot 4. Biomass estimation 4.6 Results Variables Si STi Variance D1 Dt p95 0.8128 0.9453 0.1314 0.1068 0.0072 tr_3 0.8513 0.8404 0.1426 0.1214 0.0228 Sensitivity analysis results 4. Biomass estimation 4.6 Results Strudy area Model obtained Basque Error Goverment Encartaciones 2,084,520.43 ton 2,936,472.48 ton 29% Validation of the model in the Encartaciones region “leave-one-out” or “k fold” cross-validation: The original sample was divided in 5 folds, with 11 elements per fold. The mean value of the addition of the square of the residuals oscillates between 0.0674 and 0.0682 logarithmic units, more or less the 0.7% of the mean value of the field biomass. 4. Biomass estimation 4.7 Conclusions This study has shown a highly automatic and simply process to estimate biomass using LiDAR data from a low point density flight (0.5 points/m2) for PinusRadiata specie, that can be extrapolated to other areas, becoming a very powerful tool for this purpose and avoiding other traditional methods (NFI) which supposes a very high investment of time and money. The LiDAR data used in this study are totally public and continuous in time, they are collected every 4/5 years, this circumstance supposes having actualized and free data.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us