Mmono134-Endmatter.Pdf

Mmono134-Endmatter.Pdf

Selected Titles in This Series 151 S . Yu . Slavyanov , Asymptotic solutions o f the one-dimensional Schrodinge r equation , 199 6 150 B . Ya. Levin , Lectures on entire functions, 199 6 149 Takash i Sakai, Riemannian geometry , 199 6 148 Vladimi r I. Piterbarg, Asymptotic methods i n the theory o f Gaussian processe s and fields, 1996 147 S . G . Gindiki n an d L. R. Volevich , Mixed problem fo r partia l differentia l equation s with quasihomogeneous principa l part, 199 6 146 L . Ya. Adrianova , Introduction t o linear system s of differential equations , 199 5 145 A . N. Andrianov and V. G. Zhuravlev , Modular form s an d Heck e operators, 199 5 144 O . V. Troshkin, Nontraditional method s in mathematical hydrodynamics , 199 5 143 V . A. Malyshev an d R. A. Minlos, Linear infinite-particl e operators , 199 5 142 N . V . Krylov, Introduction t o the theory o f diffusio n processes , 199 5 141 A . A. Davydov, Qualitative theor y o f control systems , 199 4 140 Aizi k I. Volpert, Vitaly A. Volpert, an d Vladimir A. Volpert, Traveling wav e solutions o f parabolic systems, 199 4 139 I . V . Skrypnik, Methods for analysi s o f nonlinear ellipti c boundary valu e problems, 199 4 138 Yu . P. Razmyslov, Identities o f algebras and their representations, 199 4 137 F . I. Karpelevich and A. Ya. Kreinin , Heavy traffic limit s for multiphas e queues, 199 4 136 Masayosh i Miyanishi, Algebraic geometry, 199 4 135 Masar u Takeuchi, Modern spherica l functions, 199 4 134 V . V. Prasolov, Problems and theorem s in linear algebra, 199 4 133 P . I. Naumkin an d I. A. Shishmarev, Nonlinear nonloca l equations in the theory o f waves, 199 4 132 Hajim e Urakawa, Calculus of variations an d harmonic maps, 199 3 131 V . V. Sharko, Functions on manifolds: Algebrai c and topological aspects, 199 3 130 V . V. Vershinin, Cobordisms and spectral sequences , 199 3 129 Mitsu o Morimoto, An introduction t o Sato' s hyperfunctions, 199 3 128 V . P. Orevkov, Complexity o f proofs an d their transformations i n axiomatic theories, 199 3 127 F . L. Zak, Tangents and secants o f algebraic varieties, 199 3 126 M . L. Agranovskii, Invariant functio n space s o n homogeneous manifold s o f Lie groups and applications, 199 3 125 Masayosh i Nagata, Theory o f commutative fields, 1993 124 Masahis a Adachi, Embeddings an d immersions, 199 3 123 M . A. Akivis and B. A. Rosenfeld, Eli e Cartan (1869-1951) , 199 3 122 Zhan g Guan-Hou, Theory o f entire and meromorphic functions : Deficien t an d asymptoti c value s and singula r directions, 199 3 121 LB . Fesenk o an d S. V . Vostokov, Local fields and thei r extensions: A constructive approach, 199 3 120 Takeyuk i Hid a an d Masuyuki Hitsuda, Gaussian processes , 199 3 119 M . V . Karasev an d V. P. Maslov, Nonlinear Poisso n brackets. Geometry an d quantization, 199 3 118 Kenkich i Iwasawa, Algebraic functions, 199 3 117 Bori s Zilber, Uncountably categorica l theories , 199 3 116 G . M. Fel'dman, Arithmetic of probability distributions , and characterization problem s on abelian groups, 199 3 115 Nikola i V . Ivanov, Subgroups o f Teichmuller modular groups , 199 2 114 Seiz o ltd, Diffusion equations , 199 2 113 Michai l Zhitomirskil , Typical singularities o f differential 1-form s and Pfaffia n equations , 199 2 112 S . A. Lomov, Introduction t o the general theory o f singular perturbations, 199 2 111 Simo n Gindikin, Tube domains and the Cauchy problem, 199 2 110 B . V. Shabat, Introduction t o comple x analysis Part II. Functions o f severa l variables, 199 2 (Continued in the back of this publication) Problems and Theorems in Linear Algebra This page intentionally left blank V.V. Prasoiov Problems and Theorems in Linear Algebra 10.1090/mmono/134 BHKTOP BacHJibeBir a IIpacojiO B 3AHAMH H TEOPEML I JIHHEHHOH AJirEBPb l Translated b y D . A . Leite s fro m a n origina l Russia n manuscrip t Translation edite d b y Simeo n Ivano v 2000 Mathematics Subject Classification. Primar y 15-01 . ABSTRACT. Thi s boo k contain s the basic s o f linear algebr a with a n emphasi s o n nonstandard an d neat proof s o f known theorems. Man y o f the theorems o f linear algebra obtained mainly during th e past thirt y year s ar e usuall y ignore d i n textbooks bu t ar e quit e accessibl e fo r student s majorin g or minorin g i n mathematics . Thes e theorem s ar e give n wit h complet e proofs . Ther e ar e abou t 230 problems wit h solutions . Library o f Congres s Cataloging-in-Publicatio n Dat a Prasolov, V . V . (Vikto r Vasil'evich ) [Zadachi i teoremy linemo i algebry . English ] Problems an d theorem s i n linea r algebra/V . V . Prasolov ; [translate d b y D . A . Leite s fro m a n original Russia n manuscript ; translatio n edite d b y Simeo n Ivanov ] p. cm . — (Translation s o f mathematical monographs , ISS N 0065-9282 ; v. 134 ) Includes bibliographica l references . ISBN 0-8218-0236- 4 1. Algebras , Linear . I . Ivanov , Simeon . II . Title . III . Series . QA184.P7313 199 4 94-1333 2 512/.5—dc20 CI P Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , or multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed to the Acquisitions Department, America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-229 4 USA . Request s ca n als o b e mad e b y e-mail t o [email protected] . © 199 4 b y the America n Mathematica l Society . Al l rights reserved . Reprinted wit h correction s 1996 . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o the Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-free an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . & Printe d o n recycle d paper . Visit th e AM S hom e pag e a t http://www.ams.org / 10 9 8 7 6 5 4 1 3 1 2 1 1 1 0 0 9 0 8 CONTENTS Preface x v Main notations and conventions xvi i Chapter I. Determinant s 1 Historical remarks: Leibni z and Sek i Kova. Cramer , L'Hospital, Cauch y and Jacobi 1. Basic properties of determinants 1 The Vandermonde determinant an d its application. Th e Cauchy determinant. Continue d frac - tions and the determinant of a tridiagonal matrix. Certai n other determinants. Problems 2. Minors and cofactors 9 Binet-Cauchy's formula. Laplace' s theorem. Jacobi' s theorem on minors of the adjoint matrix. The generalize d Sylvester' s identity . Chebotarev' s theore m o n th e matri x ||£ u||f~ , wher e e — exp(2ni/p). Problems 3. The Schur complement 1 6 GivenA = ( n 1 2 ),thematrix(^4|^ii ) = A22—A21A7, 1 A\2 is called the Schur complement \A2\ A22J (of A\\ in A). 3.1. de t A = de t A u de t (A\A n). 3.2. Theorem . (A\B) = ((A\C)\(B\C)). Problems 4. Symmetri c functions, sums x\ H f-xf , an d BernoulU numbers 1 9 Determinant relations between ok (x\,..., x n), J * (X\ ,..., x„ ) = x f H hx j and p^ (x\, ..., x„ ) = l l n ^2 x\ ... x n . A determinant formula for S„ (k) = 1 " -\ h (k — 1)". The Bernoulli numbers and S n(k). 4.4. Theorem . Let u = S\(x) andv — S2W. Then for k > 1 there exist polynomials p^ and q^ such that S2k+\ W = u 2pjc(u) and S^M = v 4k(u)- Problems Solutions Chapter II. Linea r spaces 3 5 Historical remarks: Hamilton and Grassmann 5. The dual space. The orthogonal complement 3 7 Linear equations and their application to the following theorem: Vlll CONTENTS 5.4.3. Theorem . If a rectangle with sides a andb is arbitrarily cut into squares with sides x\,... ,x„ then — € Q and — £ Qfor all i. a b Problems 6. Th e kernel (null space) and the image (range) o f an operator. Th e quotient space 6.2.1. Theorem . Ker^* = (ImA) 1- andlmA* = (KQTA^. Fredholm's alternative . Kronecker-Capelli' s theorem . Criteri a fo r solvabilit y o f th e matri x equation C = AXB.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us