Optimal Design of Experiments Session 4: Some Theory

Optimal Design of Experiments Session 4: Some Theory

Optimal design of experiments Session 4: Some theory Peter Goos 1 / 40 Optimal design theory Ï continuous or approximate optimal designs Ï implicitly assume an infinitely large number of observations are available Ï is mathematically convenient Ï exact or discrete designs Ï finite number of observations Ï fewer theoretical results 2 / 40 Continuous versus exact designs continuous Ï ½ ¾ x1 x2 ... xh Ï » Æ w1 w2 ... wh Ï x1,x2,...,xh: design points or support points w ,w ,...,w : weights (w 0, P w 1) Ï 1 2 h i ¸ i i Æ Ï h: number of different points exact Ï ½ ¾ x1 x2 ... xh Ï » Æ n1 n2 ... nh Ï n1,n2,...,nh: (integer) numbers of observations at x1,...,xn P n n Ï i i Æ Ï h: number of different points 3 / 40 Information matrix Ï all criteria to select a design are based on information matrix Ï model matrix 2 3 2 T 3 1 1 1 1 1 1 f (x1) ¡ ¡ Å Å Å T 61 1 1 1 1 17 6f (x2)7 6 Å ¡ ¡ Å Å 7 6 T 7 X 61 1 1 1 1 17 6f (x3)7 6 ¡ Å ¡ Å Å 7 6 7 Æ 6 . 7 Æ 6 . 7 4 . 5 4 . 5 T 100000 f (xn) " " " " "2 "2 I x1 x2 x1x2 x1 x2 4 / 40 Information matrix Ï (total) information matrix 1 1 Xn M XT X f(x )fT (x ) 2 2 i i Æ σ Æ σ i 1 Æ Ï per observation information matrix 1 T f(xi)f (xi) σ2 5 / 40 Information matrix industrial example 2 3 11 0 0 0 6 6 6 0 6 0 0 0 07 6 7 1 6 0 0 6 0 0 07 ¡XT X¢ 6 7 2 6 7 σ Æ 6 0 0 0 4 0 07 6 7 4 6 0 0 0 6 45 6 0 0 0 4 6 6 / 40 Information matrix Ï exact designs h X T M ni f(xi)f (xi) Æ i 1 Æ where h = number of different points ni = number of replications of point i Ï continuous designs h X T M wi f(xi)f (xi) Æ i 1 Æ 7 / 40 D-optimality criterion Ï seeks designs that minimize variance-covariance matrix of ¯ˆ ¯ 2 T 1¯ Ï . that minimize ¯σ (X X)¡ ¯ ¯ T 1¯ Ï . that minimize ¯(X X)¡ ¯ ¯ ¯ . that maximize ¯XT X¯ or M Ï j j Ï D-optimal designs minimize ˆ Ï generalized variance of ¯ Ï volume of confidence ellipsoid about unknown ¯ Ï “D” stands for determinant 8 / 40 Ds-optimality criterion Ï useful when the interest is only in a subset of the parameters Ï useful when intercept or block effects are of no interest Ï seeks designs that minimize determinant of variance-covariance matrix corresponding to subset of ¯ Y X¯ ² Ï Æ Å X ¯ X ¯ ² Æ 1 1 Å 2 2 Å where ¯1 is the set of parameters of interest 9 / 40 Ds-optimality criterion · T T ¸ T X1 X1 X1 X2 Ï M (X X) T T Æ Æ X2 X1 X2 X2 · ¸ T 1 A B cov(¯ˆ ) (X X)¡ Ï Æ Æ CD part of the variance-covariance matrix corresponding to ¯1 minimizing A is the same as minimizing Ï j j ¯¡ T T T 1 T ¢ 1¯ ¯ X X X X (X X )¡ X X ¡ ¯ ¯ 1 1 ¡ 1 2 2 2 2 1 ¯ and as maximizing ¯ T T T 1 T ¯ ¯X X X X (X X )¡ X X ¯ 1 1 ¡ 1 2 2 2 2 1 10 / 40 A-optimality criterion Ï seeks designs that minimize average variance of parameter estimates Ï seeks designs that minimize p X ¡ ˆ ¢ var ¯i /p i 1 Æ p = number of model parameters Ï seeks designs that minimize 2 ¡ T ¢ 1 trace σ X X ¡ or ¡ T ¢ 1 trace X X ¡ 11 / 40 V- and G-optimality criteria Ï V-optimality (also Q-, IV-, I-optimality) Ï seeks designs that minimize average prediction variance over design region Â Ï . that minimize Z 2 T T 1 σ f (x)(X X)¡ f(x)dx Â Ï G-optimality Ï seeks designs that minimize maximum prediction variance over design region Â Ï . that minimize T T 1 max var{yˆ(x)} max f (x)(X X)¡ f(x) Â Æ Â 12 / 40 Discussion Ï problem: in general, all optimality criteria lead to different designs Ï exception: D-optimal continuous designs = G-optimal continuous designs Ï general equivalence theorem Ï prediction variance is maximal in design points Ï maximum = number of model parameters Ï what optimality criterion to use? 13 / 40 D-optimality criterion Ï most popular criterion Ï D-optimal designs are usually quite good w.r.t. other criteria Ï D-optimal designs are not affected by linear transformations of levels of the experimental variables Ï computational advantages: update formulas 14 / 40 Linear transformations of factor levels X XA Z ! Æ #¯ ¯ & ¯ ¯ max¯XT X¯ max¯ZT Z¯ ¯ ¯ ¯(XA)T XA¯ Æ ¯ ¯ ¯AT XT XA¯ Æ ¯ ¯¯ ¯ ¯AT ¯¯XT X¯ A Æ j j ¯ ¯ A 2 ¯XT X¯ Æ j j 15 / 40 Quadratic regression in one variable  [ 1,1] Ï Æ ¡ Y ¯ ¯ x ¯ x2 ² Ï Æ 0 Å 1 Å 2 Å Ï D-optimal continuous design ½ 1 0 1 ¾ Design 1 ¡ Å Æ 1/3 1/3 1/3 Ï information matrix 2 1 0 2/33 M1 4 0 2/3 0 5 Æ 2/3 0 2/3 16 / 40 Quadratic regression in one variable Ï general equivalence theorem implies that D-optimal continuous design is also G-optimal Ï D-optimal design minimizes the maximum prediction variance Ï maximum is equal to p Ï check by plotting prediction variance T 1 var{yˆ(x)} f (x)M¡ f(x) Æ 1 for all x [ 1,1] 2 ¡ 17 / 40 Prediction variance T 1 var{yˆ(x)} f (x)M¡ f(x) Æ 1 2 3 0 332 1 3 £ 2¤ 3 ¡ 1 x x 4 0 0 54 x 5 Æ 2 3 0 9 x2 ¡ 2 2 1 3 £ 2 3 9 2¤ 3 3x x 3 x 4 x 5 Æ ¡ 2 ¡ Å 2 x2 3 9 3 3x2 x2 3x2 x4 Æ ¡ Å 2 ¡ Å 2 9 9 3 x2 x4 Æ ¡ 2 Å 2 18 / 40 Prediction variance var{yˆ(x)} p 3 Æ 2 1 1 0.5 0 0.5 1 ¡ ¡ 19 / 40 Quadratic regression in one variable Ï consider other design ½ 1 0 1 ¾ Design 2 ¡ Å Æ 1/4 1/2 1/4 Ï information matrix 2 1 3 1 0 2 1 M2 40 2 05 Æ 1 1 2 0 2 20 / 40 Prediction variance T 1 var{yˆ(x)} f (x)M¡ f(x) Æ 2 2 2 0 232 1 3 £ 2¤ ¡ 1 x x 4 0 2 0 54 x 5 Æ 2 0 4 x2 ¡ 2 1 3 £ 2 2¤ 2 2x 2x 2 4x 4 x 5 Æ ¡ ¡ Å x2 2 2x2 2x2 2x2 4x4 Æ ¡ Å ¡ Å 2 2x2 4x4 Æ ¡ Å 21 / 40 Prediction variance var{yˆ(x)} 4 p 3 Æ 2 1 1 0.5 0 0.5 1 ¡ ¡ + Design 2 is not D-optimal 22 / 40 Optimal exact designs Ï A-optimal continuous design ½ 1 0 1¾ » ¡1 1 1 Æ 4 2 4 what if n 4,8,12? Ï Æ Ï multiply weights of continuous design by 4, 8 or 12 Ï integer numbers of runs at each point what if n 5,6,7? Ï Æ Ï multiply weights by 5, 6, or 7 Ï non-integer numbers of runs at some of the points Ï not useful in practice 23 / 40 Polynomial regression in one variable D-optimal design points for the dth order polynomial regression in one variable d x1 x2 x3 x4 x5 x6 x7 weight 1 1 1 1/2 ¡ 2 1 0 1 1/3 ¡ 3 1 a a 1 1/4 ¡ ¡ 3 3 4 1 a 0 a 1 1/5 ¡ ¡ 4 4 5 1 a b b a 1 1/6 ¡ ¡ 5 ¡ 5 5 5 6 1 a b 0 b a 1 1/7 ¡ ¡ 6 ¡ 6 6 6 q a p1/5 b (7 2p7)/21 3 Æ 5 Æ ¡ q a p3/7 a (15 2p15)/33 4 Æ 6 Æ Å q q a (7 2p7)/21 b (15 2p15)/33 5 Æ Å 6 Æ ¡ 24 / 40 Quadratic regression in one variable Ï Design 1 has covariance matrix 2 3 0 3 3 T 1 ¡ (X X)¡ 4 0 3/2 0 5 Æ 3 0 9/2 ¡ T 1 with trace(X X)¡ 3 3/2 9/2 9 Æ Å Å Æ Ï Design 2 has covariance matrix 2 2 0 23 T 1 ¡ (X X)¡ 4 0 2 0 5 Æ 2 0 4 ¡ T 1 with trace(X X)¡ 2 2 4 8 Æ Å Å Æ Ï Design 2 is A-optimal 25 / 40 23 Factorial design Ï main-effects model Y ¯ ¯ x ¯ x ¯ x ² Æ 0 Å 1 1 Å 2 2 Å 3 3 Å Ï model matrix 21 1 1 13 ¡ ¡ ¡ 61 1 1 17 6 Å ¡ ¡ 7 61 1 1 17 6 ¡ Å ¡ 7 61 1 1 17 X 6 Å Å ¡ 7 Æ 61 1 1 17 6 ¡ Å Å 7 61 1 1 17 6 Å Å Å 7 61 1 1 17 4 ¡ ¡ Å 5 1 1 1 1 Å ¡ Å 26 / 40 23 factorial design Ï (total) information matrix 28 0 0 03 T 60 8 0 07 M X X 6 7 Æ Æ 40 0 8 05 0 0 0 8 Ï per observation information matrix 21 0 0 03 1 T 60 1 0 07 M¤ (X X) 6 7 Æ n Æ 40 0 1 05 0 0 0 1 27 / 40 Prediction variance T © ª 1 var{yˆ(x)} f (x) M¤ ¡ f(x) Ï Æ 2 1 3 £ ¤© ª 1 6x17 1 x1 x2 x3 M¤ ¡ 6 7 Æ 4x25 x3 1 x2 x2 x2 Æ Å 1 Å 2 Å 3 if  [ 1,1]3, then this is maximal when Ï Æ ¡ x 1, x 1, x 1 1 Ƨ 2 Ƨ 3 Ƨ Ï maximum = 4 = p Ï general equivalence theorem is satisfied 3 Ï 2 factorial design is D- and G-optimal 28 / 40 More Ï Plackett-Burman designs: optimal for main-effects model Ï factorial designs: optimal for main-effects-plus-interactions models Ï some remarks Ï off-diagonal elements of information matrix often zero (impossible when quadratic terms) Ï optimal designs are often symmetric Ï these properties are more difficult to achieve for exact designs 29 / 40 Quadratic regression in two variables Y ¯ ¯ x ¯ x ¯ x x ¯ x2 ¯ x2 ² Ï Æ 0 Å 1 1 Å 2 2 Å 12 1 2 Å 11 1 Å 22 2 Å Ï D-optimal continuous design 1 Å 0.096 x2 0.08025 1 0.14575 ¡ 1 x1 1 ¡ Å Ï D-optimal discrete designs n 9: one observation at each point of the Ï Æ continuous D-optimal design n 6: D-optimal exact design does not resemble Ï Æ D-optimal continuous one 30 / 40 Information matrix D-optimal continuous design 2 3 1 0 0 0 0.74 0.74 6 0 0.74 0 0 0 0 7 6 7 6 7 6 0 0 0.74 0 0 0 7 6 7 6 0 0 0 0.58 0 0 7 6 7 40.74 0 0 0 0.74 0.585 0.74 0 0 0 0.58 0.74 31 / 40 Quadratic regression in two variables n 6 n 7 Æ Æ n 8 n 9 D-optimalÆ exact designsÆ 32 / 40 Quadratic design in two variables n 6 n 7 Æ Æ n 8 n 9 D-optimalÆ exact three-levelÆ designs 33 / 40 Quadratic regression in 2 variables 1 run, 2 runs, 3 runs D-optimal exact design n 18 Æ 34 / 40 An industrial example Ï experiment to investigate effect of amount of glycerine (%), x (1 x 3) Ï 1 · 1 · Ï speed temperature reduction (°F/min), x2 (1 x 3) · 2 · Ï response: amount of surviving biological material (%), y Ï context: freeze-dried coffee retaining volatile compounds in freeze-dried coffee is important for its smell and taste Ï Excel file: quadratic3.xls 35 / 40 An industrial example Y ¯ ¯ x ¯ x Ï i Æ 0 Å 1 1i Å 2 2i ¯ x x ¯ x2 ¯ x2 ² Å 12 1i 2i Å 11 1i Å 22 2i Å Ï 9 observations / tests 2 Ï 3 factorial design is optimal Ï what if combination of high x1 and high x2 are not allowed? 36 / 40 Constrained design region 3 x2 2 x1 x2 5 constraintÅ · 1 1 2 3 x1 x1: glycerine, x2: temperature reduction 37 / 40 Constrained design region: solution I scale 32 factorial design down so that it fits in constrained design region 3 x2 2 1 1 2 3 x1 T 1 det(X X)¡ 0.0192 Æ 38 / 40 Constrained design region: solution II move forbidden point (3,3) inward 3 x2 2 1 1 2 3 x1 T 1 det(X X)¡ 0.0006 Æ 39 / 40 Constrained design region: solution III use optimal design approach 3 x2 2 (1.9,1.9) 1 1 2 3 x1 T 1 det(X X)¡ 0.0005 Æ 40 / 40.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us