Development of Novel Peptide Nucleic Acids A

Development of Novel Peptide Nucleic Acids A

b-Dicarbonyl compounds Compounds having two carbonyl groups separated by an intervening carbon atom are called b-dicarbonyl compounds, and these compounds are highly versatile reagents for organic synthesis. O O O O C C C R C C C OR' b b b-Dicarbonyl system b-Keto ester ** The pKa for such a proton is in the range 9-11, acidic enough to be removed easily by an alkoxide base to form an enolate. O O O H O OR C C C C C.. C + HOR H enolate anion pKa = 9-11 .. .. .. .. .. .. O . O . O O . O O C C C .. C C C R C OR' R C OR' R C OR' H H H Resonance structure of the anion of a b-keto ester Synthesis of b-keto ester (Claisen condensation) O O O NaOC H 2 2 5 CH3COC2H5 CH3CC..HCOC2H5 + C2H5OH + Na (removed by distillation) Sodiumacetoacetic ester HCl O O CH3CCH2COC2H5 Ethyl acetoacetate (acetoacetic ester) (76%) O O O O (1) NaOC2H5 R CH C + H CHC R CH2C CHCOC H + C H OH 2 OC2H5 OC2H5 + 2 5 2 5 (2) H3O R R (R may also be H) b-Keto ester Mechanism Step1 .. O O . .. + . OHC H + C H OH R CHC OC2H5 .. 2 5 RC.. H C OC2H5 2 5 H .. O . RCH C OC2H5 Step 2 .. .. .. .. O . O O O . RCH2C + . RCH2C CH C OC2H5 HC C OC2H5 . C H O . OC2H5 R 2 5 .. R .. O . O .. + . OC2H5 RCH2C CH C OC2H5 .. R Step 3 .. .. O . O H O O .. .. + . OC H + C H OH .. 2 5 RCH2C C C OC2H5 2 5 RCH2C C C OC2H5 R R Ethanol b-Keto ester Ethoxide ion b-Keto ester anion (weaker acid) (strong acid) (stronger base) (weaker base) .. .. .. .. .. .. O O O O O O . .. RCH C C COC H 2 2 5 RCH2 C C COC2H5 RCH2 C C COC2H5 R R R O O RCH2 C C CHOC2H5 H R Step 4 Resonance hybrid O O O O + H H3O RCH2 C C COC2H5 RCH2 C C COC2H5 H (rapid) R R Keto form OH O RCH2 C C COC2H5 R Enol form O Only one hydrogen CH3CHCOCH2CH3 CH3 Ethyl-2-methylpropanoate Crossed Claisen condensations O O O O (1) NaOC H COC2H5 + CH COC H 2 5 CCH2COC2H5 3 2 5 + (2) H3O Ethyl benzoate Ethyl benzoylacetate (60%) (no hydrogen) O O C OC H O 2 5 (1) NaOC2H5 CH2COC2H5 + CH C2H5OCOC2H5 + (2) H3O C OC2H5 Ethyl phenylacetate Diethyl carbonate O (no carbon) Diethyl phenylmalonate (65%) Dieckmann condensation It is an intramolecular Claisen condensation. Thecarbon atom and the ester group for the condensation come from the same molecule. ** In general, Dieckmann condensation is useful only for the preparation of five- and six-membered rings. O O O O (1) NaOC2H5 OC2H5 C2H5OC(CH2)4COC2H5 + (2) H3O Diethyl hexanedioate Ethyl 2-oxocyclopentanecarboxylate (74-81%) (diethyl adipate) Mechanism OEt OEt O H O O O CH + .. OEt C OEt H OEt Ethoxide anion removes The enolate anion attacks the carbonyl an hydrogen group at the other end of the chain O O EtO O H O H + OEt OEt OEt An ethoxide anion is expelled The ethoxide anion removes the acidic hydrogen located between two carbonyl groups. This favorable equilibrium drives the reaction. O O O O .. + HOEt H Cl OEt OEt Addition of HCl rapidly protonates the anion, giving the final product. Acetoacetic ester synthesis utility 1- Preparation.. of mono and dialkylacetoacetic.. ester .. .. O O . O Na+ . O .. CH3C CH2 COC2H5 + C2H5ONa CH3C CH COC2H5 + C2H5OH Acetoacetic ester Sodioacetoacetic ester R X .. .. O O CH3C CH COC2H5 + NaX R Monoalkylacetoacetic ester + O O O K O .. CH C + 3 CH COC2H5 + (CH3)3CO K CH3C C COC2H5 + (CH3)3COH R R Monoalkylaceto- Potassium tert-butoxide R' X acetic ester O R' O CH3C C COC2H5 + KX R Dialkylacetoacetic ester 2- Synthesis of monosubstituted methyl ketone (monosubstituted acetone) O O O O O O + dilute NaOH H3O CH3C CH COC2H5 CH3C CH CO Na CH3C CH COH heat R R R Monoalkylacetoacetic ester O Basic hydrolysis of the ester group Acidification heat CH3C CH2 + CO2 o 100 C R Decarboxylation of theb-Keto acid Specific examples Synthesis of 2-heptanone: O O O O (1) NaOC2H5/ C2H5OH (1) dilute NaOH CH C CH 3 2 COC2H5 CH3C CH COC2H5 + (2) CH3CH2CH2CH2Br (2) H3O Ethyl acetoacetate CH CH CH CH (acetoacetic ester) 2 2 2 3 Ethyl butylacetoacetate (69-72%) O O O heat CH3C CH COH CH3C CH2 CO2 CH2CH2CH2CH3 CH2CH2CH2CH3 2-Heptanone (52-61% overall from ethyl acetoacetate) Utility of malonic ester synthesis (synthesis of substituted acetic acid) 1- Preparation of carboxylic acid (mono and dialkylacetic acid) O O C2H5O C CH2 C OC2H5 COOC2H5 COOC2H5 NaOC2H5 RX + CH COOC H RCHCOOC H 2 2 5 ethanol 2 5 Alkyl halide Diethyl malonate - Alkylated derivative (malonic ester) of diethylmalonate (1) HO , H2O RCH COOH (2) H+ 2 (3) heat Carboxylic acid Mechanism Step 1 Diethyl malonate, the starting compound, forms a relatively stable enolate anion: .. .. O O C2H5O C CH C OC2H5 H OC2H5 .. .. .. .. O O O O C2H5O C CH C OC2H5 C2H5O C C..H C OC2H5 + HOC2H5 .. .. O O C2H5O C CH C OC2H5 Step2 This enolate anion can be alkylated in an SN2 reaction, O O O O C2H5O C C..H C OC2H5 C2H5O C CH C OC2H5 + X R X R Enolate ion Monoalkylmalonic ester and the product can be alkylated again if our synthesis requires it: O O O O (CH ) CO .. R' X C2H5O C CH C OC2H5 3 3 C2H5O C C C OC2H5 R R O R' O C2H5O C C C OC2H5 R Dialkylmalonic ester Step 3 The mono- or dialkylmalonic ester can then be hydrolyzed to a mono- or dialkylmalonic acid, and substituted malonic acids decarboxylate readily. Decarboxylation gives a mono- or disubstituted acetic acid. O O O O (1) HO , H O heat C H O 2 2 5 C CH C OC2H5 + HO C CH C OH (2) H3O R R Monoalkylmalonic ester H O O O - CO C C 2 CH O 2 C OH HO C R R H Monoalkylacetic acid O O R' O R' O (1) HO , H O heat C H O 2 2 5 C C C OC2H5 + HO C C C OH (2) H3O R R Dialkylmalonic ester H O O R' O - CO C C 2 O CH C OH HO C R R' R Dialkylacetic acid Specific examples of the malonic ester synthesis utility 1) A malonic ester utility in synthesis of hexanoic acid O O O O (1) NaOC2H5 C2H5O C CH C OC H 2 2 5 C2H5O C CH C OC2H5 (2) CH3CH2CH2CH2Br CH2CH2CH2CH3 Diethyl butylmalonate (80 - 90%) O (1) 50% KOH, reflux CH2 C OH (2) dilute H2SO4, reflux (- CO2) CH2CH2CH2CH3 Hexanoic acid (75%) 2) A malonic ester utility in synthesis of 2-ethylpentanoic acid O O O O (1) NaOC2H5 C2H5O C CH2 C OC2H5 C2H5O C CH C OC2H5 (2) CH3CH2Br CH2CH3 Ethyldiethylethylmalonate (80 - 90%) O O O O (1) KOC(CH3)3 (1) HO , H2O C2H5O C C C OC2H5 HO C C C OH (2) CH CH CH I + 3 2 2 (2) H3O H3CH2CH2C CH2CH3 H3CH2CH2C CH2CH3 Diethyl ethylpropylmalonate Ethylpropylmalonic acid H O O O 180oC CH3CH2CH2CH C OH - CO2 HO C C O CH2CH3 H CH CH C 3 2 2 CH2CH3 2-Ethylpentanoic acid 3) A malonic ester utility in synthesis of 2-methyldodecanoic acid COOCH2CH3 COOCH2CH3 1) NaOCH2CH3, ethanol 1) NaOCH2CH3, ethanol CH2COOCH2CH3 CHCOOCH2CH3 2) CH Br 2) CH (CH ) CH Br Diethyl malonate 3 3 2 8 2 CH3 Diethyl -2-methyl-1,3-propanedioate (79-83%) H C COOCH CH 3 2 3 1) KOH, ethanol-water H3C H C C 2) H+ H3C(CH2)8H2C COOCH CH H C(CH ) H C 2 3 3) heat 3 2 8 2 COOH Diethyl-2-decyl-2-methyl-1,3-propanedioate 2- Methyldodecanoic acid (61-74%).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us