Design and Production of 3D Printed Bolus for Electron Radiation Therapy

Design and Production of 3D Printed Bolus for Electron Radiation Therapy

DESIGN AND PRODUCTION OF 3D PRINTED BOLUS FOR ELECTRON RADIATION THERAPY by Shiqin Su Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia August 2014 © Copyright by Shiqin Su, 2014 Table of Contents LIST OF TABLES .......................................................................................................... vi LIST OF FIGURES ....................................................................................................... vii ABSTRACT................................................................................................................... xiv LIST OF ABBREVIATIONS AND SYMBOLS USED ............................................ xvi ACKNOWLEDGEMENTS ......................................................................................... xix Chapter 1 INTRODUCTION ..........................................................................................1 1.1 Cancer Treatment with Radiation..........................................................................1 1.1.1 Types of radiation therapies.......................................................................2 1.1.2 Beam generation in a linear accelerator.....................................................3 1.1.3 Treatment Planning....................................................................................8 1.2 Electron Beam Radiation Therapy ......................................................................10 1.2.1 Use of bolus in electron therapy ..............................................................12 1.2.1.1 Functions of bolus.........................................................................12 1.2.1.2 Limitations of bolus ......................................................................13 1.3 Modulated Electron Radiation Therapy (MERT)................................................15 1.4 Research Goals ....................................................................................................20 Chapter 2 PHYSICS OF ELECTRON BEAM THERAPY .......................................22 2.1 Interactions of Electrons with Matter ..................................................................22 2.1.1 Soft interactions (b >> a) .........................................................................23 2.1.2 Hard interactions (b Ĭ a) ........................................................................24 2.1.3 Radiative interactions (b << a) ................................................................24 ii 2.2 Stopping Power....................................................................................................25 2.2.1 Collision Stopping Power ........................................................................26 2.2.2 Restricted Stopping Power.......................................................................27 2.2.3 Radiative Stopping Power........................................................................28 2.3 Electron range......................................................................................................30 2.4 Electron Scattering ..............................................................................................31 2.4.1 Single Scattering ......................................................................................31 2.4.2 Multiple Scattering...................................................................................33 2.4.3 Scattering Power ......................................................................................34 2.4.4 Backscattering..........................................................................................35 2.5 Characteristics of Clinical Electron Beam3 .........................................................36 2.5.1 Electron Source Position..........................................................................36 2.5.2 Electron Beam Energy Specification .......................................................37 2.5.3 Central Axis Depth-Dose Curves.............................................................38 2.5.4 Profile and Penumbra...............................................................................41 2.5.5 Isodose Lines............................................................................................42 2.5.6 Field Size Dependence.............................................................................43 2.6 Dosimetry of Clinical Electron Beam .................................................................44 2.6.1 Calculation of absorbed dose ...................................................................44 2.6.2 Cylindrical Chamber................................................................................45 2.6.3 Parallel Plate Chamber.............................................................................48 2.6.4 Diode Dosimetry......................................................................................50 2.6.5 MOSFET Dosimetry System ...................................................................51 2.7 Dose calculation algorithms for electron beams..................................................52 iii 2.7.1 Pencil Beam Algorithm (PBA) ................................................................53 2.7.2 Tissue inhomogeneities in electron beam dose calculation .....................56 2.7.3 Monte Carlo (MC) Simulation.................................................................58 2.7.3.1 Electron-Gamma Shower (EGS) computer code..........................59 2.7.3.2 Clinical Implementation of Monte Carlo Dose Calculation .........61 Chapter 3 MATERIAL AND METHODS ...................................................................63 3.1 Dose Calculation Algorithm................................................................................63 3.1.1 Eclipse Electron Monte Carlo..................................................................63 3.1.2 EGSnrc.....................................................................................................64 3.2 Radiation detectors ..............................................................................................66 3.3 Bolus Design for Electron Therapy.....................................................................67 3.3.2 Calculation for Bolus Thickness..............................................................70 3.3.3 Inhomogeneity correction with the incorporation of CT data..................72 3.3.4 Smoothing for Hot Spots..........................................................................73 3.3.5 Smoothing for Coverage ..........................................................................75 3.3.6 Smoothing for Irregular Surface ..............................................................76 3.3.7 Adjustment at PTV margin ......................................................................76 3.3.8 Shift outside the PTV...............................................................................78 3.4 Bolus Fabrication.................................................................................................78 3.5 Dosimetric Verification .......................................................................................80 3.6 Quality Assurance................................................................................................81 Chapter 4 RESULTS ......................................................................................................83 4.1 Determination of CET Value...............................................................................83 iv 4.2 Bolus optimization and bolus fitting ...................................................................84 4.2.1 Wedge target volume with heterogeneity ................................................84 4.2.2 Foot Phantom ...........................................................................................88 4.2.3 Head Phantom..........................................................................................91 4.2.4 Rhabdomyosarcoma Patient.....................................................................95 4.2.5 Chest Wall Patients ..................................................................................97 4.2.6 Basal cell carcinoma (BCC) patient.......................................................103 Chapter 5 DISCUSSIONS............................................................................................105 Chapter 6 CONCLUSIONS AND FUTURE WORK................................................108 6.1 Summary of Work .............................................................................................108 6.2 Future Work.......................................................................................................108 6.2.1 Clinical application of 3D-printed bolus................................................108 6.2.2 3D-printed bolus in small field electron therapy ...................................109 Bibliography ..................................................................................................................112 v LIST OF TABLES Table 1.1 Definition of various volumes of interest .................................................. 9 Table 1.2 Comparison of different MERT approaches.............................................. 18 vi LIST OF FIGURES Figure 1.1 Representation of TCP (curve A) and NTCP (curve B)........................... 2 Figure 1.2 A diagram of typical medical linear accelerator adapted from Radiation Oncology Physics: A Handbook for Teachers and Students3 ...................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    138 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us