Chapter 13 Answers A.69 Chapter 13 Answers 13.1 Vectors in the Plane 31

Chapter 13 Answers A.69 Chapter 13 Answers 13.1 Vectors in the Plane 31

Chapter 13 Answers A.69 Chapter 13 Answers 13.1 Vectors in the Plane 31. y 1. (4,9) 3. (-15, 3) 3 5. Y = 1 7. No solution 9. No solution 11. No solution 13. a = 4, b = - I 15. a = 0, b = I 17. (XI, YI) + (0,0) = (XI + 0, YI + 0) = (XI' YI) 3 x 19. [(XI' YI) + (X2, Yz)] + (x3' YJ) = (XI + X2 + X3, YI + Yz + Y3) = (XI' YI) + [(X2, Yz) + (x3, Y3)] 21. a(b(x, Y» = a(bx, by) = (abx, aby) = ab(x, y) 33. y 23. y 2 • • • • •• • • • • •• x x • •• • • • 4 • • • • • • 35. 25. (a) k(l,3) + 1(2,0) = m(1, 2) (b) k + 21 = m and 3k + 0 = 2m x (c) k = 4,1 = 1 and m = 6; i.e. 4S03 + S2 = 6S02 27. (a) d (b) e 29. (a) c + d = (6,2) -6 y 37. (a) 2 .r Q x 3 6 vAw Pl....-).R u 234 x (b) -2e+a=(-1,0) (b) v=(l,2); w=(1, -2); u=(-2,0) (c) 0 y 39. (a) y -2e+a x x (b) (0, I) A.70 Chapter 13 Answers (c) (0,5/2) 9. (d) (0, -2) x 11. w -2 (e) (I, y) (f) v=(O,y) 41. (a) Yes (c) Eliminate rand s. w (b) v = -(s/r)w (d) Solve linear equations. 13. - i + 2j + 3k 15. 7i + 2j + 3k 13.2 Vectors in Space 17. i - k 19. i - j + k 21. i + 4j, B ~ 0.24 radians east of north 1. 23. (a) 12:03 P.M. (b) 4.95 kilometers 25. .\" F = 50 lb. F, = 50 sin (50') lb ~ 38.3 lb. 3. (3. 27. The points have the forms (O,y,O), (O,O,z), (x, y, 0), and (x, 0, z). 29. y y 5. (11,0, II) 7. (-3, -9, -15) Chapter 13 Answers A.71 31. 9i+ 12j+ 15k 33. 26i + 16j + 38k 33. (I/13)i + (I/13)j + (1/13 )k, (1/ Ii)i + (1/ Ii)k 35. a = !, b = - ! 37. a = 5, b = 2 35.13 39. (4.9,4.9,4.9) and (-4.9, -4.9,4.9) newtons. 37. Ii 41. (a) Letting x, y, and z coordinates be the number 39. (i) ~14t2 - 121 + 4 of atoms of C, H, and 0 respectively, we get (ii) t = 3/7 p(3,4,3) + q(0,0,2) = r(l,0,2) + s(0,2, I). (iii) ~1O/7 (b) P = 2, r = 6, s = 4, q = 5 41. 13 knots (c) 0 43. Solve one equation for I and substitute. The line is vertical when XI = X2' 2(3.4.3)+ 5(0.0.2) = 6(1.0,2) + 4(0,2, I). 45. When the angle between the vectors is O. 6(1,0.2) 4(0,2. I) 13.4 The Dot Product 1.4 3. 0 10 H 5. ~ 0.34 radian 7. 7T /2 radians 9. (l/{S)i + (2/{S)j 10 11. 0.955 radians c 43. (a) P~I=(-I,-I,-I),Po=(I,O,O), PI = (3, I, I), P2 = (5,2,2) (b) x (i+j+k) .\' 13. Use Figure 13.4.2. 15. 142 17. '150/11 19. x + Y + z = 0 21. x = 0 (c) The line through (I, 0, 0) parallel to the vector 23. - x + y + z - I = 0 (2, I, I). 25. (2/ff4)i + (3/ff4)j + (l/ff4)k 27. (I/Ii)i + (1/Ii)j 29. x + Y + z - I = 0 13.3 Lines and Distances 31. x = I + t, Y = I + I, z = I + I 1. Use vectors with tails at the vertex containing the 33. (I, - 1/2,3/2), ff4 /2 two sides. 35. x = (22 - 9t)/7, Y = (- 6 - 2t)/7, z = I 3. Use the distributive law for scalar multiplication. 37. 313. 5. (I, - t) 39. Ii /2. 7. x = I - I, Y = I - I, z = I 41. Letting (a,b) and (c,d) be the given points, the 9. x = t, Y = t, z = t equation of the line is (a - c)x + (b - d)y 11. x = I - t,y = I - I, z = I = (l/2)(a 2 - c2 + b2 - d 2). Use this to show that 13. x = - I + 3t, y = - 2 - 2t the two points are equidistant from points on the 15. (-2, -J,O) 17. No line. 43. (a) 3 19. 13 21. Ii (b) -2 23. 21i 25. ::!:: Ii46 (c) 213 27. 112i + j + 2kll = 3, which is less than 13 + Ii· (d) 3 29. One solution is u = i, v = - i, w = i. 45. Letting PI = (p,q) and P2 = (r,s), we have 31. Each side has length Ii. (r - p)x + (s - q)y = (r2 + s2 _ p2 - q2)/2. A.72 Chapter 13 Answers 47. To show that v and w = (v . el)el + (v . e2)e2 are 11. Compute the two determinants. equal, show that v - w is orthogonal to both el 13. Compute the two determinants. and e2' 15. 0 19. -6 49. FI = - (F12)(i + j) and F2 = (F12)(i - j) 17. 4 21. 9 51. (a) F = (3v'2 i + 3v'2 j) 23. abc (b) ~ 0.322 radians j (c) 18v'2 25. - I ~1=-i-3j+3k 53. Use the component formula for the dot product. Ii I 55. (a) [12.5)2 + (16.7)2 - (20.9)21/[(12.5)(16.7)] IS j close to O. 27. I ~I=i-j+k (b) 0.54% Il I 57. (a) Let s = tVa2 + b2 + c2 j 29·1 0 1= -2j (b) Use the fact that Ilull = I. ~ 0 -> 2 (c) Use IIull = I. 31. 6 (d) For LI and L 2 , 33. 12 coso: = 1//3 so 0: = cos-I(l//3), 35. Compute and simplify. cos f3 = 1//3 so f3 = cos-I(I//3), 37. Compute both determinants and compare. cos y = 11/3 so y = cos-I(ll /3). 39. Use Example 8 after renumbering the vectors. For L3 and L 4 , 41. coso: = 11m so 0: = cos-I(l/m), cos f3 = 11m so f3 = cos-I(l/m) and cosy = 91m so y = cos-I(9Im). (e) Only the line t(l, I, I). 13.5 The Cross Product I.j+k 3. 2i - 2j + 4k 5.9i+18j 7. 6i - 2k 9. -i + k 11. 3v'2 13. 2 15. -(l/v'2)j + (1/v'2)k 17. - (I I v'2)i - (I I v'2)j 19. (v'2/6)i - (v'2/6)j + (2v'2/3)k 21. 2x + 3y + 4z = 0 23. x - 3y + 2z = 0 25. 3v'2/2 27. The points are collinear, so the area is zero. 29. Substitute component expressions for VI and V2' 31. The angle between the vectors is () - 1/1. Now use property I in the box on p. 679. 33. Use the result of Exercise 32. 35. Show that M satisfies the defining properties of RxF. 37. Show that nl(N X a) and n2(N X b) have the same magnitude and direction. 39. (a) Draw a figure showing the two lines and the plane in the hint. (b) v'2 41. If F is the gravitational force, the gyroscope ro­ tates to the left (viewed from above). 43. Substitute the expressions for x and y in the equa­ 13.6 Matrices and Determinants tions. 45. Substitute the given expressions for x, y, and z in 1. 2 3.0 the equations. 5. -2 7. 25 47. x=37/13,y= -3/13 9. ac 49. Compute both determinants and compare. Chapter 13 Answers A.73 51. Subtract four times row 1 from row 2, subtract 49. This is a (double) cone with vertex at the origin. seven times row 1 from row 3, expand by column I and then evaluate the 2 X 2 determinant. 53. 3, -6 Review Exercises for Chapter 13 y 1. (2,8) 3. (- 1,,- 2, 17) 5. Iii + j - k 7. -4i + 7j - 11k 9.6 11. -2k 13. i - 2j 51. (a) Draw a vector diagram. (b) Use c X c = O. 15. 2i + j - 3k (c) Use part (b). 17. (-2//IT)i + (3//IT)j + (3//IT)k 53. Use the dot product to show that the vectors a - b 19. 0 (the three vectors lie in a plane). and - a - b are perpendicular. 21. (a) (6,6) 55. 3 57. 1 59. -2 61. 0 63. y38T 65. 29/2 4 (b) 1/3 69. Use the fact that IIall 2 = a' a, expand both sides and use the definition of c. 71. x=3/7,y= -29/21,z=23/21 73. -162 75. Each side equals 2 2xy - tyz + 5z 2 - 48x + 54y - 5z - 96. (Or switch the first two columns and then subtract the first row from the second.) 77. v is orthogonal to i (b) (9,7) 79. (a) 4k 23. Put the triangle in the xy-plane; use cross products (b) 20,12 i + 20,12 j with k. 81. (a) Substitute i, j, and k for w. 25. (1825 - 600y''2) I /2 R:: 31.25 km /hr. (b) (u - v) . w = O. 27. (a) 70 cos B + 20 sin B (c) Repeat the reasoning in (a) (b) (21 If + 6) ft.-lbs. (d) Apply (c) to u - v. 29. x = 1 + t, y = 1 + t, Z = 2 + t 83. (a) 31. x = 1 + t, y = 1 - t, Z = 1 - t 33.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    51 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us