Human Eye • Human Eye Is a Simple Single Lens System • Crystalline Lens

Human Eye • Human Eye Is a Simple Single Lens System • Crystalline Lens

Human Eye • Human eye is a simple single lens system • Crystalline lens provide focus • Cornea: outer surface protection • Iris: control light • Retina: where image is focused • Note images are inverted Human Eye Distance • Crystalline lens to retina distance 24.4 mm • Eye focuses object up to 25 cm from it • Called the near point or Dv = 25 cm Magnification of Lens • Lateral change in distance equals change in image size • Measures change in apparent image size y′ s′ m = M = = − y s Magnification with Index Change • Many different ways of measuring magnification • With curved index of refraction surface measure apparent change in distance to image • Called Lateral Magnification s′ − r m = − s + r • m is + if image virtual, - if real Angular Magnification • For the eye look at angular magnification θ ′ m = M = θ • Represents the change in apparent angular size Simple Magnifying Glass • Human eye focuses near point or Dv = 25 cm • Magnification of object: ratio of angles at eye between unaided and lens • Angle of Object with lens y y tan(θ≈) = = θ Dv 25 • For maximum magnification place object at lens f (in cm) y θ ′ = f • Thus magnification is (where f in cm) θ ′ 25 m = = θ f • e.g. What is the magnification of a lens f = 1 inch = 2.5 cm θ ′ 25 25 m = = = = 10 θ f 2.5 Power of a Lens or Surface • Power: measures the ability to create converging/diverging light by a lens • Measured in Diopters (D) or 1/m • For a simple curved surface n′ − n P = r • For a thin lens 1 P = f • Converging lens have + D, diverging - D • eg f = 50 cm, D = +2 D f = -20 cm, D = -5 D • Recall that for multiple lens touching 1 1 1 1 = + + L fe f1 f2 f3 • Hence power in Diopters is additive D = D1 + D2 L Eyeglasses • Use Diopters in glasses • Farsighted, Hypermetopia: focus light behind retina Use convex lens, +D to correct • Nearsighted, Myopia: focus in front of retina use concave lens, -D to correct • Normal human eye power is ~58.6 D Classical Compound Microscope • Classical system has short fo objective lens object is near focal length when focused • Objective creates image at distance g from focal point • Objective working distance typically small (20-1 micron) • Eyepiece is simple magnifier of that image at g • Magnification of Objective g mo = fo • where g = Optical tube length • Eyepiece magnification is 25 me = fe • Net Microscope Magnification g25 M = mome = fo fe Classic Microscope • To change power change objective or eyepiece Infinite Corrected Microscopes • Classical Compound Microscope has limited tube length • New microscope "Infinite Corrected" • Objective lens creates parallel image • Tube lens creates converging image • Magnification now not dependent on distance to tube lens: thus can make any distance • Good for putting optics in microscope • Laser beam focused at microscope focus Telescope • Increases magnification by increasing angular size • Again eyepiece magnifies angle from objective lens • Simplest "Astronomical Telescope" or Kepler Telescope two convex lenses focused at the same point • Distance between lenses: d = fo + fe • Magnification is again θ f m = e = o θ o fe Different Types of Telescopes • Galilean: concave lens at focus of convex d = fo + fe • Eyepiece now negative fe • Most others mirror types Telescopes as Beam Expanders • With lasers telescopes used as beam expanders qc Parallel light in, parallel light out • Ratio of incoming beam width W1 to output beam W2 f 2 W2 = W1 f1 Telescopes as Beam Expanders • Can be used either to expand or shrink beam • Kepler type focuses beam within telescope: • Advantages: can filter beam • Disadvantages: high power point in system • Galilean: no focus of beam in lens • Advantages: no focused beam more compact less corrections in lenses • Disadvantages: Diverging lens setup harder to arrange Lens Aberrations: Spherical • Aberrations are failures to focus to a "point" • Some are failures of paraxial assumption θ 3 θ 5 sin(θ ) = θ − + 3! 5! L • Formalism developed by Seidel • Light through edge of lens at different focus • Longitudinal Spherical Aberration along axis • Transverse Spherical Aberration across axis • Make Aspheric surfaces to compensate • Or can use combine two or more spherical surfaces Astigmatism Aberration • Off axis rays are not focused at the same plane as the on axis rays • Called "skew rays" • Principal ray, from object through optical axis to focused object • Tangental rays (horizontal) focused closer • Sagittal rays (vertical) further away • Corrected using multiple surfaces Coma Aberration • Comes from third order sin correction • Off axis distortion • Results in different magnifications at different points • Single point becomes a comet like flare • Coma increase with NA • Corrected with multiple surfaces Field Curvature Aberration • All lenses focus better on curved surfaces • Called Field Curvature • positive lens, inward curves • negative lens, outward (convex) curves • Reduced by combining positive & neg lenses Distortion Aberration • Distortion means image not at paraaxial points • Grid used as common means of projected image • Pincushion: pulled to corners • Barrel: Pulled to sides Lens Shape • Coddingdon Shape Factor r + r q = 2 1 r2 − r1 • Shows how aberrations change with shape Index of Refraction & Wavelength: Chromatic Aberration • Different wavelengths have different index of refraction • Often list wavelength by spectral colour lines (letters) • Index change is what makes prism colour spread • Typical changes 1-2% over visible range • Generally higher index at shorter wavelengths Chromatic Aberration • Chromatic Aberrations different wavelength focus to different points • Due to index of refraction change with wavelength • Hence focuses rays at different points • Generally blue closer (higher n) Red further away (lower index) • Important for multiline lasers • Achromatic lenses: combine different n materials whose index changes at different rates • Compensate each other Lateral Colour Aberration • Blue rays refracted more typically than red • Blue image focused at different height than red image Singlet vs Achromat Lens • Combining two lens significantly reduces distortion • Each lens has different glass index • positive crown glass • negative meniscus flint • Give chromatic correction as well Combined lens: Unit Conjugation • Biconvex most distortion • Two planocovex significant improvement • Two Achromats, best Materials for Lasers Lenses/Windows • Standard visible BK 7 • Boro Silicate glass, pyrex • For UV want quartz, Lithium Fluroide • For IR different Silicon, Germanium .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us