
Appendix Laplace Transforms Involving Fractional and Irrational Operations As the cases of integer-order systems, Laplace transform and its inverse are very important. In this appendix, the definition is given first. Then some of the essential special functions are described. Finally, an inverse Laplace transform table involving fractional and irrational-order operators is given. A.1 Laplace Transforms For a time-domain function f(t), its Laplace transform, in s-domain, is defined as ∞ L [f(t)] = f(t)e−stdt = F (s), (A.53) 0 where L [f(t)] is the notation of Laplace transform. If the Laplace transform of a signal f(t)isF (s), the inverse Laplace transform of F (s) is defined as 1 σ+j∞ f(t)=L −1[F (s)] = F (s)estds, (A.54) j2π σ−j∞ where σ is greater than the real part of all the poles of function F (s). A.2 Special Functions for Laplace Transform Since the evaluation for some fractional-order is difficult, special functions may be needed. Here some of the special functions are introduced and listed in Table A.1. A.3 Laplace Transform Tables An inverse Laplace transform table involving fractional and irrational oper- ators is collected in Table A.2 [86, 300]. 391 392 Appendix Table A.1 Some special functions Special functions Definition ∞ k γ (γ)k z 1 Mittag-Leffler E (z)= , Eα,β (z)=Eα,β (z), Eα(z)=Eα,1(z) α,β Γ(αk + β) k! k=0 t −t2 τ2 Dawson function daw(t)=e e dτ 0 t 2 −τ2 erf function erf(t)= √ e dτ π 0 ∞ 2 −τ2 erfc function erfc(t)= √ e dτ =1− erf(t) π t n t2 d −t2 Hermit polynomial Hn(t)=e e dtn 2 2 2 Bessel function Jν (t) is the solution to t y¨ + ty˙ +(t − ν )y =0 −ν Extended Bessel function Iν (t)=j Iν (jt) Table A.2 Inverse Laplace transforms with fractional and irrational operators F (s) f(t)=L −1[F (s)] F (s) f(t)=L −1[F (s)] αγ−β n n− 1 s β− γ α 1 2 t 2 t 1E −at √ ,n=1, 2, ··· √ (sα + a)γ α,β sn s 1 · 3 · 5 ···(2n − 1) π k πs k 1 coth | sin kt| arctan sin kt s2 +k2 2k s t ) 2 2 √ s − a 2 1 −k s t − 1 k2 k log (1 − cosh at) √ e 2 e 4t − k erfc √ s2 t s s π 2 t √ 2 2 −k s √ s + a 2 e ak a2t k log (1 − cos at) √ √ e e erfc a t + √ s2 t s(a + s) 2 t n √ (1 − s) n! 1 1 −at √ H2n t √ √ e erf (b − a)t n+ 1 − s 2 (2n)! πt s + b(s + a) b a n 1 (1 − s) n! √ √ J0(at) − √ H2n+1 t s2 + a2 n+ 3 (2n + 1)! π s 2 − k − 1 (a b) k − 1 (a+b)t a b √ I0(at) √ √ e 2 Ik t ,k>0 s2 − a2 ( s+a+ s+b)2k t 2 √ √ √ √ s+2a− s 1 −at s +2a − s 1 −at √ √ e I1(at) √ √ e I1(at) t t √s+2a + s s +2a + s ν √ k− 1 ( s2 +a2 −s) 1 π t 2 √ ν J − I a ν (at),ν > 1 k k− 1 (at) 2 2 (s2 − a2) Γ(k) 2a 2 √ s + a ν √ k− 1 ( s2 −a2 +s) 1 π t 2 √ ν I − √ J a ν (at),ν> 1 k− 1 (at) s2 − a2 ( s2 + a2)k Γ(k) 2a 2 ( k k ka s − a 1 bt at ( s2 +a2 −s) Jk(at),k > 0 log e − e t s − b t J − 1 1(at) 1 − 1 (a+b)t a b √ √ √ e 2 I0 t s + s2 + a2 at s + a s + b 2 Appendix 393 Table A.2 (continued) F (s) f(t)=L −1[F (s)] F (s) f(t)=L −1[F (s)] 2 2 √ √ 1 NJN (at) b − a a2t b2t √ , N>0 √ e b−a erf a t −be erfc b t (s+ s2 +a2)N at (s − a2)( s + b) √ √ √ √ 1 bt at s +2a − s −at s−a− s−b √ e − e √ ae I1(at)+I0(at) 2 πt3 s √ 1 −k/s √ 1 −k/s 1 e J0 2 kt √ e √ cos 2 kt s s πt √ √ 1 k/s 1 1 −k/s 1 √ e √ cosh 2 kt √ e √ sin 2 kt s πt s s πk √ 1 (ν−1) √ 1 k/s 1 1 −k/s t 2 √ e √ sinh 2 kt e Jν−1 2 kt ,ν > 0 s s πk sν k √ 1 (ν−1) √ −k s k − 1 k2 1 k/s t 2 k e √ e 4 e Iν−1 2 kt 2 πt3 sν k ) √ √ 1 −k s k 1 − s t − 1 1 e erfc √ √ e 2 e 4t − erfc √ s 2 t s s π 2 t √ √ − s √ 1 −k s 1 − 1 k2 e t+1 1 √ e √ e 4t √ √ e erfc t + √ s πt s( s +1) 2 t α−1 1 t −at 1 α−1 α e t Eα,α −at (s + a)α Γ(α) sα + a α a α s α 1 − Eα −at Eα −at s(sα + a) s(sα + a) α 1 α s α t E1,1+α(at) −t E1,1−α(at), 0 <α<1 sα(s − a) s − a ) 1 1 1 t √ √ √ 2 s πt s s π √ 1 2 √ s 1 2 √ √ √ daw t √ − √ daw t s(s +1) π s +1 πt π √ 1 2 s 1 at √ t E1,3/2 −a t √ √ e (1+2at) s(s + a2) (s − a) s − a πt √ √ s 1 2 1 1 a2t √ E1,1/2 −a t √ √ − ae erfc a t s + a2 t s + a πt √ √ 1 √ s 1 a2t √ erf t √ + ae erf a t s s +1 s − a2 πt √ √ a t 1 1 a2t 1 2 −a2t τ2 √ e erf a t √ √ e e dτ 2 2 s(s − a ) a s(s + a ) a π 0 √ ) √ √ 1 a2t s s t 2 √ √ e erfc a t 2 − √ daw t s( s + a) s +1 π π −t √ 1 e 1 t √ √ √ e erf t s +1 πt s(s − 1) √ √ √ s 1 t k! k− / k √ +e erf t √ t( 1) 2E ( ) ∓λ t , (s) >λ2 s − 1 πt s ± λ 1/2,1/2 α−1 α−1 1 t s α 1/α Eα ∓λt , (s) > |λ| sα Γ(α) sα ± λ 394 Appendix Table A.2 (continued) F (s) f(t)=L −1[F (s)] 1 1 −at/2 a ( √ √ e Iν t ,k > 0 s(s + a)( s + a + s)2ν aν 2 √ k− 1 − Γ(k) t 2 − 1 (a+b)t a b 2 I k k π e k− 1 t (s + a) (s + b) a − b 2 2 1 JN (at) √ √ s2 + a2(s + s2 + a2)N aN 1 J (at) √ √ 1 s2 + a2(s + s2 + a2) a 2 2 √ √ b − a a2t b b2t √ √ e erf a t − 1 +e erfc b t s(s − a2)( s + b) a √ −k s √ ae ak a2t k k √ −e e erfc a t + √ + erfc √ s(a + s) 2 t 2 t − − 1 − 1 (a+b)t a b a b √ √ te 2 I0 t + I1 t s + a(s + b) s + b 2 2 √ − s − 1 √ e e 4k t 1 √ √ − e +1erfc t + √ s +1 πt 2 t √ − s √ e 1 t 1 √ erfc √ − e +1erfc t + √ s( s +1) 2 t 2 t References 1. K.J. Astr¨˚ om, R.M. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2008 2. K.S. Miller, B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley and Sons, 1993 3. I. Podlubny. Fractional Differential Equations, Mathematics in Science and Engineering, volume 198. San Diego: Academic Press, 1999 4. R.L. Magin. Fractional Calculus in Bioengineering. Begell House, 2006 5. K.B. Oldham, J. Spanier. The Fractional Calculus. Theory and Applications of Differentiation and Integration of Arbitrary Order. New York: Dover, 2006 6. S. Dugowson. Les Diff´erentielles M´etaphysiques: Histoire et Philosophie de la G´en´eralisation de l’Ordre de D´erivation. Ph.D. thesis, University of Paris, 1994 7. V. Kiryakova. Generalized Fractional Calculus and Applications. Number 301 in Pitman Research Notes in Mathematics. Essex: Longman Scientific & Technical, 1994 8. R. Gorenflo, F. Mainardi. Fractional calculus: Integral and differential equations of fractional order. In A. Carpintieri, F. Mainardi eds., Fractals and Fractional Calculus in Continuum Mechanics. Springer Verlag, 1997 9. G. Mittag-Leffler. Sur la repr´esentation analytique d’une branche uniforme d’une fonction monogene. Acta Mathematica, 1904, 29:101–181 10. R. Gorenflo, Y. Luchko, S. Rogosin. Mittag-Leffler type functions: notes on growth properties and distribution of zeros. Preprint A-97-04, Freie Universit¨at Berlin, 1997 11. I. Podlubny. Numerical solution of ordinary fractional differential equations by the fractional difference method. In S. Elaydi, I. Gyori, G. Ladas eds., Advances in Difference Equations. Proceedings of the Second International Conference on Difference Equations. CRC Press, 1997 12. S. Westerlund, L. Ekstam. Capacitor theory. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5):826–839 13. M. Cuadrado, R. Cabanes. Temas de Variable Compleja. Madrid: Servicio de Publicaciones de la ETSIT UPM, 1989 14.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages25 Page
-
File Size-