T H Theory Overview

T H Theory Overview

ttH¯ Theory Overview Stefano Pozzorini Zurich University in collaboration with Stefan Guindon, Laura Reina, Chris Neu 8th Workshop of LHC Higgs Cross Section Working Group CERN, Geneva, 22 January 2015 Outline 1 ttH¯ Signal 2 Backgrounds for H b¯b ! 3 Backgrounds for H γγ ! 4 Backgrounds for H W W; ZZ; ττ multi-leptons ! ! 5 Scale uncertainties in NLO matching & merging Theory Challenges in ttH¯ searches Large multi-particle backgrounds (tt¯+ jets, ttV¯ + jets, ttγγ¯ , VV + jets) Key priority is precision for backgrounds NLO automation powerful but 2 ! 4 CPU intensive NLO matching & merging crucial various new methods (FxFx, MEPS@NLO, MINLO, UNLOPS,. ) various automated tools( MG5 aMC@NLO, Sherpa, Minlo{PowHeg,. ) Theory uncertainty estimates nontrivial still limited experience in NLO matching+merging framework sophisticated analyses (data-driven extrapolations, reweighting, . ) S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 1 / 17 Strategy of ttH¯ subgroup New priorities dominant sources of theory systematics $ emphasis on backgrounds and NLO Monte Carlo methods close intereaction with ATLAS/CMS to identify theory priorities Goals and guiding principles recommend state-of-the-art methodology and encourage use of all relevant tools support/coordinate NLO simulations in ATLAS/CMS understanding and assessment of theory uncertainties (choices and variations of renormalisation+factorisation+resummation+merging scales in multi-scale processes) S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 2 / 17 Outline 1 ttH¯ Signal 2 Backgrounds for H b¯b ! 3 Backgrounds for H γγ ! 4 Backgrounds for H W W; ZZ; ττ multi-leptons ! ! 5 Scale uncertainties in NLO matching & merging NLO tools for ttH¯ I ¯ NLO ttH cross section 1400 _ σ(pp → ttH + X) [fb] [Beenakker et al '01; Reina, Dawson '01] 1200 √s = 14 TeV MH = 120 GeV 1000 µ0 = mt + MH/2 moderate uncertainty (9% scale, 8% PDF+αS ) LO 800 NLO sufficient for mid-term future 600 400 200 0 0.2 0.5 1 2 5 µ/µ0 Publicly available NLO+PS tools 0.001 0.0009 POWHEG+PYTHIA 6 POWHEG+PYTHIA 8 MG5 aMC@NLO (2011) 0.0008 POWHEG+HERWIG NLO 0.0007 Powhel samples (2011) 0.0006 0.0005 (H) [pb/GeV] T 0.0004 [Jaeger et al, 1501.04498] /dp Powheg Box 0.0003 d 0.0002 Sherpa+OpenLoops or GoSam 0.0001 0 0 50 100 150 200 250 300 350 ∼ 10% uncertainty for inclusive observables, 1.2 more if sensitive to jet radiation R 1 0.8 0 50 100 150 200 250 300 350 pT(H) [GeV] S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 3 / 17 NLO tools for ttH¯ II Spin-correlated top decays tth¯ (γγ) : corr 0.65 Frame 1 tth¯ (γγ) : uncor in Powheg, MG5 aMC@NLO, Sherpa ttγγ¯ : corr ttγγ¯ : uncor 0.6 (NLO production)×(LO decays) ℓℓ θ 0.55 dN cos Breit{Wigner smearing d 1 N 0.5 spin correlations via ttH¯ (+j) tree amplitudes 0.45 ) mandatory for signal and all backgrounds! [Biswas et al '14] 0.4 -1 -0.6 -0.2 0.2 0.6 1 cos θℓℓ tt-H production at the 13 TeV LHC Towards NLO EW corrections 10-1 LO weak corrections to ttH¯ in MG5 aMC@NLO LO+NLO QCD LO+NLO QCD+Weak 10-2 −10% at high-pT per bin [pb] σ 2 ! 2; 3; 4 NLO EW automation in OpenLoops 10-3 [1412.5157] and Recola [1411.0916] [Frixione et al '14] MadGraph5_aMC@NLO 10-4 ) relevant for signal and backgrounds at high ratio over LO pT 1.4 1.2 1 relative contributions 0.4 0.2 QCD Weak HBR 0 -0.2 0 200 400 600 pT(H) [GeV] S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 4 / 17 NLO tools for ttH¯ III Towards NLO merging for ttH¯ + 0; 1 jets parton-level ttHj¯ Sherpa+GoSam [Deurzen et al, '13] Sherpa and MG5 aMC@NLO support NLO merging ) more reliable prediction and uncertainty for extra jet activity (impact on ttH¯ analysis?) Off-shell+EW effects in pp `ν + 2j + 4b at LO [Denner at al, 1412.5290] ! tiny ttH¯ signal{background interference νℓ νℓ W+ W+ ℓ+ ℓ+ g g ¯ t t ttb¯ b QCD bckg receives +16% EW cont b t b t and −8% QCD{EW interference! b b¯ + g W b¯ b t d d extra +12% from off-shell top decays t W− W− ¯u ¯u g g ¯t ¯t ) calls for detailed off-shell studies at NLO b¯ b¯ S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 5 / 17 Outline 1 ttH¯ Signal 2 Backgrounds for H b¯b ! 3 Backgrounds for H γγ ! 4 Backgrounds for H W W; ZZ; ττ multi-leptons ! ! 5 Scale uncertainties in NLO matching & merging Irreducible ttb¯ ¯b background NLO ttb¯ ¯b [Bredenstein et al '09/'10; Bevilacqua et al '09]; ttb¯ ¯b dominates ttH¯ (b¯b) systematics NLO reduces uncertainty from 80% to 20{30% NLO+PS ttb¯ ¯b 5F scheme (mb = 0) with Powhel [Garzelli et al '13/'14] ttb¯ ¯b MEs cannot describe collinear g ! b¯b splittings ) inclusive tt¯+b-jets simulation requires NLO merging tt¯+ 0; 1; 2 jets NLO+PS ttb¯ ¯b 4F scheme (mb > 0) with Sherpa+OpenLoops [Cascioli et al '13] ttb¯ ¯b MEs cover full b-quark phase space ) inclusive tt¯+b-jets simulation possible S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 6 / 17 S{MC@NLO ttb¯ ¯b 4F scheme [Cascioli et al '13] Good perturbative stability but unexpected MC@NLO enhancement ttb ttbb ttbb (mbb > 100) +71%+14% +66%+15% +63%+17% σLO[fb] 2644−38%−11% 463:3−36%−12% 123:4−35%−13% +34%+5:6% +29%+5:4% +26%+6:5% σNLO[fb] 3296−25%−4:2% 560−24%−4:8% 141:8−22%−4:6% σNLO/σLO 1:251 :211 :15 +32%+3:9% +24%+2:0% +20%+8:1% σMC@NLO[fb] 3313−25%−2:9% 600−22%−2:1% 181−20%−6:0% σMC@NLO/σNLO 1:011 :071 :28 Large enhancement ( 30%) in Higgs region from double g b¯b splittings ∼ ! ) understand PS and matching systematics!! S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 7 / 17 tt¯+ jets background and merging at NLO NLO tt¯+ 2 jets [Bevilacqua, Czakon, Papadopoulos, Worek '10/'11] reduces uncertainty from 80% to 15% NLO merging (FxFx, MEPS@NLO, UNLOPS,. ) NLO and log accuracy for 0; 1; : : : n jets 0-jet NLO+PS tt¯ 1-jet NLO+PS tt¯+ 1 j separated via kT-algo at merging scale Qcut ...... smooth PS{MEs transition $ MEs with PS-like ≥ n jets NLO+PS tt¯+ n j scale and Sudakov FFs NLO merging for tt¯+ 0; 1 jets FxFx with Madgraph5/aMC@NLO [Frederix, Frixione '12] MEPS@NLO with Sherpa+GoSam [H¨ocheet al '13] S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 8 / 17 MEPS@NLO for tt¯+ 0; 1; 2 jets (Sherpa+OpenLoops) [H¨oche,Krauss, Maierh¨ofer,S. P. , Sch¨onherr,Siegert '14] ■ ☛❝☞✉✌✐✈✍ ☞✐❣✎✏ ✑✍✏ ♠✉☞✏✐✒ ☞✐❝✐✏② ✶ ❪ Consistency with LO merging and NLO+PS ❜ ✛ ❬ ✮ ✚ ✙ ✘ ✗ ✖ ✞ ✡ ✶ ☎ decent (10{20%) mutual agreement ✔ ✕ ✭ ✓ ❧ ✲❥✁ t ❃ ✹ ✵ ●✂❱ ❄ ✞ ✷ ✶ ☎ Reduction of µR; µF ; µQ variations ✸ ✞ ✶ ☎ ❧ ✲❥✁ t ❃ ✵ ●✂❱ ✻ Nlight−jet ≥ 0 1 2 ❄ ✄ ☎ ✳ ✶ ✠ ✞ LO 48% 65% 80% ✶ ☎ ❙ ▲❖ ❅◆ ▼ ❊P NLO 17% 20% 20{30% ❧ ✲❥✁ t ✆ ✺ ❙ ▲❖ ✶✳ ✄ ▼ ❊P ❅ ❃ ✵ ●✂❱ ✽ ❄ ✞ ✟ ❙ ▲❖ ✝▼ ❈ ❅◆ ✄ ☎✳ ☎ ✶ ✶ ☎ ❙ ❤❡r♣❛✰❖♣ ❡ ♥▲♦♦♣ s Merging scale choice and dependence ❖ ❧✲❥ ❡t ✷ ♣ ❃ ✹✵ ● ❱ ▲ ♦ ❄ ✁ ± GeV and dependence ◆ Qcut = 30 10 10% ♦ ❅ ✳✺ ✶ ✐ ✁ ❙ ❛ P ❘ ❊ ✶ ▼ ) NLO precision for tt¯+ 0; 1; 2 jets ❖ ❧✲❥ ❡t ✷ ♣ ❃ ✻✵ ● ❱ ▲ ♦ ❄ ✁ ◆ ♦ ❅ ✳✺ ✶ ✐ ✁ ❙ ❛ Next steps P ❘ ❊ ✶ ▼ improve CPU performance (ongoing) ❖ ❧✲❥ ❡t ✷ ♣ ❃ ✽✵ ● ❱ ▲ ♦ ❄ ✞ ✟ consolidate understanding of theory uncertainty ♦ ❅ ✳✺ ✶ ✐ ✞ ❙ ❛ P ❘ ❊ ✶ ▼ combination with ttb¯ ¯b ✶ ✷ ✸ ✁ ¯ ◆ S. Pozzorini (Zurich University) ✂✄☎ ✆✝ ttH Theory 8th HXSWG Workshop 9 / 17 Outline 1 ttH¯ Signal 2 Backgrounds for H b¯b ! 3 Backgrounds for H γγ ! 4 Backgrounds for H W W; ZZ; ττ multi-leptons ! ! 5 Scale uncertainties in NLO matching & merging Relevant backgrounds and existing predictions Relevant backgrounds tt¯+ 1; 2γ, single-top+1; 2γ, jets+1; 2γ H+jets with H ! γγ and HF jets NLO+PS for ttγ¯ and ttγγ¯ with Powhel [Kardos, Trocsanyi '14] (available also in MG5 MC@NLO and Sherpa+OpenLoops) 2 10 10− ' and 14% NLO scale 9 PowHel LHE K 1:25 PowHel-NLO 5 8 LO PowHel NLO 7 uncertainty (µ = H =2) 6 13 TeV, µ = Hˆ /2 T 0 [fb/GeV] ⊥ 2 [fb] 5 2 σ 4 , γ δ0 = 0.4 1 3 3 γ 10− p , γ > 30 GeV mild MC effects for inclusive m 2 ⊥ ∆R(γ1, γ2), yγ < 2.5 d 5 8 TeV, µ = mt 1 | | σ/ δ0 = 0.4 observables d 1.6 2 1.3 1.0 1.1 0.7 1.0 ratio K-factor 0.4 0.9 1 5 10− 2 5 1 2 5 10 0 50 100 150 200 250 300 350 400 450 500 ξ mγ1, γ2 [GeV] 2 Isolation of hard photons (Powhel) 2 SMC Rγ, q = 0.1 10− SMC δ0 = 0.1 5 [fb/GeV] 2 realistic cone isolation at NLO+PS level , γ 1 2 γ m d 10 3 − ˆ loose Frixione isolation at generation-cut level σ/ 13 TeV, µ = H /2 d 5 ⊥ 1.1 ) avoid fragmentation component 1.0 ratio 0.9 0 50 100 150 200 250 300 350 400 450 500 mγ1, γ2 [GeV] S. Pozzorini (Zurich University) ttH¯ Theory 8th HXSWG Workshop 10 / 17 Some open issues in tt¯+photons Production of tt¯+multiple photons ATLAS/CMS requires sample with Nγ =1,2 photons from matrix elements and/or shower ) requires merging of tt¯+ 0; 1; 2 γ Radiative top decays [hep-ph/0604120] ttγ¯ at NLO including radiative top decays (t ! b`+ν + γ) [Melnikov, Schulze '11] 1 1 γ in production γ in production 0.8 γ in decay 0.8 γ in decay d ) σ d γ NLO X R ( NLO T 0.6 σ p 0.6 , d d d , σ ) d NLO γ R ( 0.4 X NLO 0.4 T σ p d d 0.2 0.2 0 0 0 20 40 60 80 100 120 140 160 180 200 1 2 3 pT(γ) [GeV] R(γ, bjet) < photons from top decays dominate up to pT(γ) ∼ 60 GeV (smooth isolation, Rγi > 0:4) ) requires detailed studies for tt¯+ 2γ S.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us