2020 28Th European Signal Processing Conference

2020 28Th European Signal Processing Conference

2020 28th European Signal Processing Conference (EUSIPCO 2020) Amsterdam, Netherlands 18 -21 January 2021 Pages 1-619 IEEE Catalog Number: CFP2040S-POD ISBN: 978-1-7281-5001-7 1/4 Copyright © 2021, European Association for Signal Processing (EURASIP) All Rights Reserved *** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP2040S-POD ISBN (Print-On-Demand): 978-1-7281-5001-7 ISBN (Online): 978-9-0827-9705-3 ISSN: 2219-5491 Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: [email protected] Web: www.proceedings.com TABLE OF CONTENTS ASMSP-1: ASMSP-1: DETECTION AND CLASSIFICATION OF ACOUSTIC SCENES AND EVENTS ASMSP-1.1: HODGE AND PODGE: HYBRID SUPERVISED SOUND EVENT DETECTION ............................................ 1 WITH MULTI-HOT MIXMATCH AND COMPOSITION CONSISTENCE TRAINING Ziqiang Shi, Liu Liu, Rujie Liu, Fujitsu R&D Center, China ASMSP-1.2: ROBUST DRONE DETECTION FOR ACOUSTIC MONITORING APPLICATIONS .................................... 6 Mattes Ohlenbusch, Aike Ahrens, Christian Rollwage, Fraunhofer Institute for Digital Media Technology, Germany; Jörg Bitzer, Jade Hochschule Wilhelmshaven, Oldenburg, Elsfleth, Germany ASMSP-1.3: UNSUPERVISED DOMAIN ADAPTATION FOR ACOUSTIC SCENE ...........................................................11 CLASSIFICATION USING BAND-WISE STATISTICS MATCHING Alessandro Ilic Mezza, Politecnico di Milano, Italy; Emanuël A. P. Habets, Meinard Müller, International Audio Laboratories Erlangen, Germany; Augusto Sarti, Politecnico di Milano, Italy ASMSP-1.4: SELD-TCN: SOUND EVENT LOCALIZATION & DETECTION VIA TEMPORAL .................................... 16 CONVOLUTIONAL NETWORKS Karim Guirguis, Christoph Schorn, Andre Guntoro, Robert Bosch GmbH, Germany; Sherif Abdulatif, Bin Yang, University of Stuttgart, Germany ASMSP-1.5: LEARNING TO SEPARATE: SOUNDSCAPE CLASSIFICATION USING .................................................... 21 FOREGROUND AND BACKGROUND Dhanunjaya Varma Devalraju, Padmanabhan Rajan, Dileep A.D, Indian Institute of Technology, Mandi, India ASMSP-1.6: PROGRESSIVE TRAINING OF CONVOLUTIONAL NEURAL NETWORKS FOR ................................... 26 ACOUSTIC EVENTS CLASSIFICATION Federico Colangelo, Federica Battisti, Alessandro Neri, Università degli studi Roma Tre, Italy ASMSP-1.7: FEATURE OVERVIEW FOR JOINT MODELING OF SOUND EVENT ........................................................ 31 DETECTION AND LOCALIZATION USING A MICROPHONE ARRAY Daniel Krause, AGH University of Science and Technology, Poland; Archontis Politis, Tampere University, Finland; Konrad Kowalczyk, AGH University of Science and Technology, Poland ASMSP-1.8: ROBUST ACOUSTIC SCENE CLASSIFICATION TO MULTIPLE DEVICES USING ............................... 36 MAXIMUM CLASSIFIER DISCREPANCY AND KNOWLEDGE DISTILLATION Saori Takeyama, Tokyo Institute of Technology, LINE corporation, Japan; Tatsuya Komatsu, LINE corporation, Japan; Koichi Miyazaki, Nagoya University, LINE corporation, Japan; Masahito Togami, LINE corporation, Japan; Shunsuke Ono, Tokyo Institute of Technology, Japan ASMSP-1.9: SOUND EVENT LOCALIZATION AND DETECTION USING CONVOLUTIONAL .................................. 41 RECURRENT NEURAL NETWORKS AND GATED LINEAR UNITS Tatsuya Komatsu, Masahito Togami, Tsubasa Takahashi, LINE Corporation, Japan ASMSP-1.10: AUTOMATIC OBJECT CLASSIFICATION WITH ACTIVE SONAR USING ............................................ 46 UNSUPERVISED ANOMALY DETECTION Pietro Stinco, Giovanni De Magistris, Alessandra Tesei, Kevin D. LePage, NATO STO CMRE - Centre for Maritime Research and Experimentation, Italy ASMSP-2: ASMSP-2: MODELING, ANALYSIS AND SYNTHESIS OF ACOUSTIC ENVIRONMENTS ASMSP-2.1: FAST SOURCE-ROOM-RECEIVER ACOUSTICS MODELING ..................................................................... 51 Yuancheng Luo, Wontak Kim, Amazon, United States xvii ASMSP-2.2: MIRAGE: MULTICHANNEL DATABASE OF ROOM IMPULSE RESPONSES .......................................... 56 MEASURED ON HIGH-RESOLUTION CUBE-SHAPED GRID Jaroslav Cmejla, Tomas Kounovsky, Technical University of Liberec, Czech Republic; Sharon Gannot, Bar-Ilan University, Israel; Zbynek Koldovsky, Technical University of Liberec, Czech Republic; Pinchas Tandeitnik, Bar-Ilan University, Israel ASMSP-2.3: INFERRING THE LOCATION OF REFLECTING SURFACES EXPLOITING ........................................... 61 LOUDSPEAKER DIRECTIVITY Vincenzo Zaccà, Delft University of Technology, Netherlands; Pablo Martínez-Nuevo, Martin Møller, Bang & Olufsen, Denmark; Jorge Martínez, Richard Heusdens, Delft University of Technology, Netherlands ASMSP-2.4: A METHODOLOGY FOR THE ESTIMATION OF PROPAGATION SPEED OF ......................................... 66 LONGITUDINAL WAVES IN TONE WOOD Luca Villa, Mirco Pezzoli, Fabio Antonacci, Augusto Sarti, Politecnico di Milano, Italy ASMSP-2.5: HIGH-RESOLUTION SPEAKER COUNTING IN REVERBERANT ROOMS USING ................................ 71 CRNN WITH AMBISONICS FEATURES Pierre-Amaury Grumiaux, Srdjan Kitic, Orange Labs, France; Laurent Girin, Univ. Grenoble Alpes, GIPSA-lab, Grenoble-INP, CNRS, France; Alexandre Guérin, Orange Labs, France ASMSP-2.6: SPEECH PRIVACY PROTECTION BASED ON OPTIMAL CONTROLLING ............................................. 76 ESTIMATED SPEECH TRANSMISSION INDEX IN NOISY REVERBERANT ENVIRONMENTS suradej Doungpummet, Japan Advanced Institute of Science and Technology, Japan; Phrimphissa Kraikhun, Chatrin Phunruangsakao, Sirindhorn International Institute of Technology, Thammasat University, Thailand; Jessada Karnjana, National Science and Technology Development Agency, Thailand; Masashi Unoki, Japan Advanced Institute of Science and Technology, Japan; Waree Kongprawechnon, Sirindhorn International Institute of Technology, Thammasat University, Thailand ASMSP-2.7: TECHNIQUES IMPROVING THE ROBUSTNESS OF DEEP LEARNING ................................................... 81 MODELS FOR INDUSTRIAL SOUND ANALYSIS David S. Johnson, Fraunhofer Institute for Digital Media Technology (IDMT), Germany; Sascha Grollmisch, Technische Universität Ilmenau, Germany ASMSP-2.8: TYPE/POSITION CLASSIFICATION OF INTER-FLOOR NOISE IN RESIDENTIAL ............................... 86 BUILDINGS WITH A SINGLE MICROPHONE VIA SUPERVISED LEARNING Hwiyong Choi, Haesang Yang, Seungjun Lee, Woojae Seong, Seoul National University, Korea (South) ASMSP-3: ASMSP-3: BIOACOUSTICS AND MEDICAL ACOUSTICS ASMSP-3.1: DEMENTIA CLASSIFICATION USING ACOUSTIC DESCRIPTORS DERIVED ....................................... 91 FROM SUBSAMPLED SIGNALS Ayush Triapthi, Rupayan Chakraborty, Sunil Kumar Kopparapu, TCS Research and Innovation - Mumbai, India ASMSP-3.2: PERFORMANCE REQUIREMENTS FOR COUGH CLASSIFIERS IN ......................................................... 96 REAL-WORLD APPLICATIONS Bert den Brinker, Philips Research, Netherlands; Mara Coman, Fontys University of Applied Sciences, Netherlands; Okke Ouweltjes, Philips Research, Netherlands; Susannah Thackray-Nocera, Michael Crooks, Alyn H. Morice, Hull York Medical School, United Kingdom ASMSP-3.3: WEAK SPEECH SUPERVISION: A CASE STUDY OF DYSARTHRIA SEVERITY .................................. 101 CLASSIFICATION Mirali Purohit, Dhirubhai Ambani Institute of Information and Communication Technology, India; Mihir Parmar, Arizona State University, United States; Maitreya Patel, Harshit Malaviya, Hemant Patil, Dhirubhai Ambani Institute of Information and Communication Technology, India ASMSP-3.4: METHODS TO IMPROVE THE ROBUSTNESS OF RIGHT WHALE DETECTION ................................ 106 USING CNNS IN CHANGING CONDITIONS William Vickers, Ben Milner, Artjom Gorpincenko, University of East Anglia, United Kingdom; Robert Lee, Gardline, United Kingdom xviii ASMSP-3.5: A UNIVERSAL SYSTEM FOR COUGH DETECTION IN DOMESTIC ACOUSTIC ..................................111 ENVIRONMENTS Nikonas Simou, Nikolaos Stefanakis, Foundation for Research and Technology, Greece; Panagiotis Zervas, Hellenic Mediterranean University, Greece ASMSP-3.6: AUTOMATED DYSARTHRIA SEVERITY CLASSIFICATION USING DEEP ............................................116 LEARNING FRAMEWORKS Amlu Anna Joshy, Rajeev Rajan, College of Engineering, Trivandrum, India ASMSP-3.7: JOINTLY LEVERAGING DECORRELATION AND SPARSITY FOR IMPROVED .................................. 121 FEEDBACK CANCELLATION IN HEARING AIDS Kuan-Lin Chen, Ching-Hua Lee, Bhaskar D. Rao, Harinath Garudadri, University of California San Diego, United States ASMSP-4: ASMSP-4: MUSIC SIGNAL ANALYSIS AND PROCESSING ASMSP-4.1: MULTIPITCH TRACKING IN MUSIC SIGNALS USING ECHO STATE ................................................... 126 NETWORKS Peter Steiner, Simon Stone, Peter Birkholz, Technische Universität Dresden, Germany; Azarakhsh Jalalvand, Ghent University -- imec, Germany ASMSP-4.2: HOW LOW CAN YOU GO? REDUCING FREQUENCY AND TIME RESOLUTION ............................... 131 IN CURRENT CNN ARCHITECTURES FOR MUSIC AUTO-TAGGING Andres Ferraro, Dmitry Bogdanov, Universitat Pompeu Fabra, Spain; Jay Ho Jeon, Jason Yoon, Kakao Corp., Korea (South); Xavier Serra, Universitat Pompeu Fabra, Spain ASMSP-4.3: TRANSFER LEARNING FROM SPEECH TO MUSIC: TOWARDS ............................................................. 136 LANGUAGE-SENSITIVE EMOTION RECOGNITION MODELS Juan Sebastián Gómez Cañón, Universitat Pompeu Fabra, Spain; Estefanía

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us