Algebraic Expressions and Polynomials

Algebraic Expressions and Polynomials

ALGEBRAIC EXPRESSIONS AND POLYNOMIALS: Algebraic Expression: An algebraic expression is a mathematical phrase that contains numbers, variables and operators. Polynomial: 1 2 n An algebraic expression of the forma0+ a 1 x + a2 x +....... +an x ;an ≠ 0 anda0 ,a 1 ,a 2 ............ are constants and n is a whole number, is called polynomial in one variable. Variable: A variable is that which can take different values. Constant: A constant has a fixed value. Coefficient: When a term contains both a numerical part and a vasriable part, the numerical part is called the coefficient of the corresponding variable part. Remark: If a term has only variable part then its coefficient is 1 or -1 depending upon the sign of term. Constant Term: A term having only numerical part is called constant term. Like and Unlike Terms: The terms having same variable part are called like terms and the terms having different variable parts are called unlike terms. Types of Polynomials depending upon number of terms: Monomial: A polynomial with only one term is called a monomial. Binomial: A polynomial which contains two unlike terms is called a binomial. Trinomial: A polynomial which contains three unlike terms is called a trinomial. Degree of polynomial: The highest power of variable in a polynomial is called degree of the polynomial. Types of Polynomials depending upon degree: Constant polynomial: A polynomial with degree 0, i.e. p(x) = a Linear polynomial: A polynomial of degree 1, i.e. p(x) = ax + b Quadratic polynomial: A polynomial of degree 2, i.e.p(x) = ax2 + bx + c Cubic polynomial: A polynomial of degree 3, i.e.p(x) = ax3 + bx2 + cx + d Bi-Quadratic polynomial: A polynomial of degree 4, i.e. p(x) = ax4 + bx3 + cx2 + dx + e Zeroes of a polynomial: A real number ‘a’ is called zero of polynomial p(x) if p(a) = 0. Remark: A polynomial of degree n can have at most n zeroes. Remainder Theorem: Let p(x) be any polynomial of degree greater than or equal to 1 and let 'a' be any real number. If p(x) is divided by the linear polynomial x - a, then the remainder is p(a). Factor Theorem: If p(x) is a polynomial of degree n ≥1 and 'a' is any real number, then (i) x - a is a factor of p(x), if p(a) = 0. (ii) p(a) = 0, if x – a is a factor of p(x). .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us