Neutrinos From Supernovae John Beacom, The Ohio State University John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 1 SN 1987A: Our Rosetta Stone IMB KamII Observation: Type II supernova Observation: The neutrino progenitors are massive stars precursor is very energetic Theory: Core collapse makes a proto-neutron star and neutrinos John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 2 What Does This Leave Unknown? Total energy emitted in neutrinos? Partition between flavors? Emission in other particles? Spectrum of neutrinos? Neutrino mixing effects? ! Supernova explosion mechanism? Nucleosynthesis yields? Neutron star or black hole? Electromagnetic counterpart? Gravitational wave counterpart? ! and much more! John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 3 Plan of the Talk ✔ Introduction: Three detection modes Revolutionizing MeV neutrino astronomy Milky Way burst Nearby galaxy mini-burst Diffuse Supernova Neutrino Background Concluding perspectives John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 4 Introduction: Three Detection Modes John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 5 Basic Features of MeV Neutrino Detection Detectors must be massive: Effectiveness depends on volume, not area Example signals: + ⌫ + e− ⌫ + e− ν¯ + p e + n ! e ! Detectors must be quiet: Need low natural and induced radioactivities Example background: A(Z, N) A(Z +1,N 1) + e− +¯⌫ ! − e John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 6 Distance Scales and Detection Strategies N >> 1 : Burst N ~ 1 : Mini-Burst N << 1 : DSNB Rate ~ 0.01/yr Rate ~ 1/yr Rate ~ 108/yr high statistics, object identity, cosmic rate, all flavors burst variety average emission John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 7 Simple Estimate: Milky Way Burst Yields Super-Kamiokande (32 kton water) ~ 104 inverse beta decay on free protons ~ 102 - 103 CC and NC with oxygen nuclei ~ 102 neutrino-electron elastic scattering (crude directionality) KamLAND, MiniBooNE, Borexino, SNO+, etc (~ 1 kton oil) ~ 102 inverse beta decay on free protons ~ 102 neutron-proton elastic scattering ~ 10 - 102 CC and NC with carbon nuclei ~ 10 neutrino-electron elastic scattering IceCube (106 kton water) Burst is significant increase over background rate Possibility of precise timing information Much larger or better detectors are being proposed now John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 8 Simple Estimate: Extragalactic Mini-Burst Yields Yield in Super-Kamiokande ~ 1 (Mpc/D)^2 A 5000-kton detector could see mini-bursts from galaxies within several Mpc, where the supernova rate is above one per year New considerations for such a detector as a dense infill for IceCube! Kistler, Ando, Yuksel, Beacom, Suzuki (2011); builds on Yoichiro Suzuki’s ideas for Deep-TITAND John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 9 Simple Estimate: DSNB Event Rate Super-Kamiokande rate in Kamiokande-II rate in a ~ 1 s-1 every 10 second interval special 10 second interval NSN Mdet dNν dNν 4⇥D2 DSNB * dt ⇠ dt NSN Mdet DSNB 87A ⇥ 4⇥D2 ⇤ 87A ⇥ ⇤ For the DSNB relative to SN 1987A: 2 -10 NSN up by ~ 100 Mdet up by ~ 10 1/D down by ~ 10 DSNB event rate in Super-Kamiokande is a few per year John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 10 Revolutionizing MeV neutrino astronomy John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 11 First: Get Multi-kton-Scale Neutrino Detectors Super-K JUNO DUNE 32 kton water 20 kton oil 34 kton liquid argon Japan China United States running building proposing Excellent prospects for coverage of all neutrino flavors John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 12 Second: Enable Super-K Selection of Nuebar The signal reaction produces a neutron, but most backgrounds do not Beacom and Vagins (2004): First proposal to use dissolved gadolinium in large light water detectors showing it could be practical and effective Neutron capture on protons Gamma-ray energy 2.2 MeV Hard to detect in SK + ν¯e + p e + n ! Neutron capture on gadolinium Gamma-ray energy ~ 8 MeV Easily detectable coincidence separated by ~ 4 cm and ~ 20 µs John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 13 12 many nucleons of 16O significantly deviate - by about a dation. Some of us have been supported by funds from factor of four - from predictions. the Research Foundation of Korea (BK21 and KNRC), the Korean Ministry of Science and Technology, the Na- tional Research Foundation of Korea (NRF- 20110024009 VIII. ACKNOWLEDGMENT ), the European Union FP7 (DS laguna-lbno PN-284518 and ITN invisibles GA-2011-289442), the Japan Society We gratefully acknowledge the cooperation of the for the Promotion of Science, the National Science and Kamioka Mining and Smelting Company. The Super- Engineering Research Council (NSERC) of Canada, and Kamiokande experiment has been built and operated the Scinet and Westgrid consortia of Compute Canada; from funding by the Japanese Ministry of Education, This work is also supported by the National Natural Sci- Culture, Sports, Science and Technology, the U.S. De- ence Foundation of China (Grants No.11235006). partment of Energy, and the U.S. National Science Foun- [1] T. Hagner et al.,Astropart.Phys.14,33(2000). Simulation program for particle physics experiments, [2] S. Abe et al.,(KamLANDCollaboration),Phys.Rev. GEANT : user guide and reference manual, CERN-DD- C81, (2010) 025807. 78-2(1978). [3] B. Bellini et al., (Borexino Collaboration), J. Cosmol. [25] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, Astropart. Phys. 08 (2013) 049. E. von Toerne, and H. Voss, PoS A CAT 040 (2007); [4] J. F. Beacom and M. R. Vagins, Phys. Rev. Lett., 93: arXiv: physics/0703039. 171101 (2004). [26] P. Speckmayer, A. Hoecker, J. Stelzer, and H. VossJ. [5] K. Abe, et al.,(Hyper-Kamiokandeworkinggroup), Phys.: Conf. Ser. 219, 032057 (2010). arXiv:1109.3262. [27] H. Watanabe et al.,(Super-KamiokandeCollaboration), [6] M. Askins, et al.,(WATCHMANCollaboration), Astropart. Phys., 2009, 31:320. arXiv:1502.01132. [28] D. Cokinos and E. Melkonian, Phys. Rev. C 15, 1636 [7] L. Agostino, et al.,(MEMPHYSCollaboration),J.Cos- (1977). mol. Astropart. Phys. 1301 (2013) 024. [29] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, FLUKA: [8] C. Adams, et al.,(LBNECollaboration), Amulti-particletransportcode,CERN-2005-10(2005), arXiv:1307.7335. INFN-TC-05-11, SLAC-R-773. [9] S. Fukuda et al.,(TheSuper-KamiokandeCollabora- [30] G. Battistoni et al.,AIPConf.Proc.896,31(2007). tion), Phys. Rev. Lett. 86, 5651 (2001). [31] S. Ando, K. Sato and T. Totani, Astropart. Phys. 18, 307 [10] J. Hosaka et al, (Super-Kamiokande Collaboration), (2003). Phys. Rev. D 73, 112001 (2006). [32] T. Totani and K. Sato, Astropart. Phys. 3, 367 (1995). [11] K. Abe et al.,(TheSuper-KamiokandeCollaboration), [33] R. A. Malaney, Astropart. Phys. 7, 125 (1997). Phys. Rev. D 83, 052010 (2011). [34] D. H. Hartmann and S. E. Woosley, Astropart. Phys. 7, [12] K. Bays et al.,(TheSuper-KamiokandeCollaboration), 137 (1997). Phys. Rev. D 85, 052007 (2012). [35] M. Kaplinghat, G. Steigman, and T. P. Walker, Phys. [13] S. W. Li and J. F. Beacom, Phys. Rev. C 89, 045801 Rev. D 62, 043001 (2000). (2014). [36] L. Strigari,Fate of the GADZOOKS! Proposal M. Kaplinghat, G. Steigman, and T. Walker, [14] S. W. Li and J. F. Beacom, Phys. Rev. D 91, 105005 JCAP, 0403:007 (2004). (2015). [37] T. Totani, K. Sato, and Y. Yoshii, Astrophys. J. 460, 303 [15] S. W. Li and J. F. Beacom, arXiv:1508.05389. For about 10 years:(1996). [16] D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, Vagins[38] S. Horiuchi,and colleagues developed experimental aspects J. F. Beacom, and E. Dwek, Phys. Rev. D J. E. Purcell, C. G. Sheu, and H. R. Weller, Nucl. Phys. Beacom and colleagues developed theoretical aspects79, 083013 (2009). A745,155(2004). [39] M. Fukugita and M.Kawasaki, Mon. Not. Roy. Astron. [17] H. Zhang et al.,(Super-KamiokandeCollaboration),As- SuperSoc.-K 2015: 340, L7Yes (2003). tropart. Phys. 60 (2015) 41. [40] C. Lunardini, Phys. Rev. Lett. 102, 231101(2009). [18] K. Abe, et al., (Super-Kamiokander Collaboration), [41] Ref. [4] proposed adding a 0.2% gadolinium solution into Nucl. Instr. Meth, A 737 (2014). the SK water. After exhaustive studies, on June 27, [19] S. Yamada, et al.,IEEETrans.Nucl.Sci.,57(2010)428. 2015, the SK Collaboration formally approved the con- [20] Z. Conner, PhD thesis, University of Maryland, 1997. cept, officially initiating the SuperK-Gd project, which [21] S. Desai, PhD thesis, Boston Univesity, 2004. will enhance anti-neutrino detectability (along with other [22] http://www.nndc.bnl.gov. physics capabilities) by dissolving 0.2% gadolinium sul- [23] http://www.tunl.duke.edu/nucldata/GroundStatedecays/. fate by mass in the SK water. [24] R. Brun, R. Hagelberg, M. Hansroul, and J. C. Lassalle, Will greatly increase sensitivity for many studies John Beacom, The Ohio State University IceCube Particle Astrophysics, Madison, May 2017 14 Third: Remove Spallation Backgrounds detector backgrounds Super-K is already adopting Li-Beacom techniques Expect to reduce backgrounds in all MeV detectors by ~ 10 John Beacom, The Ohio State University
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages36 Page
-
File Size-