Copyrighted Material

Copyrighted Material

VII Contents Acknowledgment XIII 3.1.2.3 A New View of Membrane Proteins 19 3.1.2.4 The Modern Concept of Part I Introduction 1 Membranes – the Fluid Mosaic Model 19 1 Introduction 3 3.1.3 Membrane Components 19 1.1 Receptors and Signaling 3 3.1.3.1 Membrane Lipids 19 1.1.1 General Aspects of Signaling 3 3.1.3.2 Asymmetry and Heterogeneity in 1.1.2 Verbal and Physiological Signals 3 Membrane Lipids 20 1.1.3 Criteria for Recognizing Transmitters 3.1.3.3 Membrane Construction and Insertion of and Receptors 4 Proteins 20 1.1.4 Agonists 4 3.2 The Nature and Function of Proteins 21 1.1.5 Receptors 4 3.2.1 Linear and Three-Dimensional 4 1.1.6 Receptor–Enzyme Similarities Structures 22 1.2 Types of Receptors and Hormones 5 3.2.2 Primary Structure 22 1.2.1 Receptor Superfamilies 5 3.2.3 Secondary Structure 23 1.3 Receptors Are the Chemical Expression 3.2.4 Tertiary Structure 24 of Reality 6 3.2.5 Protein Domains 25 3.2.6 Proteomics 25 2 The Origins of Chemical Thinking 9 2.1 Overview of Early Pharmacological 4 Hormones as First Messengers 27 History 9 4.1 Hormones and Cellular 2.1.1 The Development of a Chemical Communication 27 Hypothesis 9 4.1.1 Discovery of Hormones 27 2.1.2 Chemical Structure and Drug Action 10 4.2 Types of Hormones 27 2.1.3 The Site of Drug Action 10 4.2.1 Pheromones for Signaling between 2.2 Modern Pharmacology 10 2.2.1 Langley and Ehrlich: the Origins of the Individuals 28 Receptor Concept 10 4.2.2 Archaea and Bacteria 28 2.2.2 Maturation of the Receptor Concept 13 4.2.3 Eukaryotes 29 2.3 Phylogenetics of SignalingCOPYRIGHTED13 4.2.3.1 MATERIAL Chromalveolates 29 2.3.1 The First Communicators 13 4.2.3.2 Unikonts – Amoebozoa, Fungi, Animals 29 Part II Fundamentals 15 4.2.3.3 Invertebrate Pheromones 31 4.2.3.4 Vertebrate Pheromones 31 3 Membranes and Proteins 17 4.3 Vertebrate Hormones and 3.1 Membranes 17 Transmitters 31 3.1.1 The Cytoplasmic Membrane – the 4.3.1 Peptide and Non-Peptide Agonists 31 Importance of Cell Membranes 17 4.3.1.1 Peptides 31 3.1.2 History of Membrane Models 17 4.3.1.2 Non-peptides 31 3.1.2.1 The Roles of Proteins in Membranes 18 4.3.2 Peptide Hormones of the 3.1.2.2 Challenges to the Danielli–Davson G-Protein-Coupled Receptors 32 Model 19 4.3.2.1 Hypothalamic-Pituitary Axis 32 VIII Contents 4.3.2.2 The Anterior Pituitary Trophic 5.3.2.2 The Ternary Complex Model 53 Hormones 34 5.3.2.3 Protean Agonism 54 4.3.3 Other Neural Peptides 35 5.3.2.4 Cubic Ternary Complex (CTC) 4.3.3.1 Opioids 35 Model 55 4.3.3.2 Non-Opioid Transmitter Peptides 36 5.3.3 Summary of Model States 55 4.3.4 Peptides from Non-Neural Sources 36 5.4 Visualizing Receptor Structure and 4.3.4.1 Digestive Tract Hormones 36 Function 55 4.3.4.2 Hormones from Vascular Tissue 38 5.4.1 Determination of Receptor K d 55 4.3.4.3 Hormones from the Blood 38 5.4.1.1 Schild Analysis 56 4.3.4.4 Peptide Hormones from Reproductive 5.4.2 Visualizing Ligand Binding 57 Tissues 39 5.4.2.1 Receptor Preparation 58 4.3.4.5 Hormones from Other Tissues 39 5.4.2.2 Equilibrium Binding Studies 58 4.3.5 Non-Peptides Acting on 5.4.2.3 Competition Studies 58 G-Protein-Coupled Receptors 39 5.4.3 X-ray Crystallography of Native and 4.3.5.1 Transmitters Derived from Amino Agonist-Bound Receptors 59 Acids 39 5.4.4 Probe Tagging (Fluorescent and 4.3.5.2 Transmitters Derived from Photoaffinity) 60 Nucleotides 40 5.5 Proteomics Approaches to Receptor 4.3.5.3 Transmitters Derived from Membrane Efficacy 60 Lipids – Prostaglandins and 5.6 Physical Factors Affecting Receptor Cannabinoids 41 Binding 61 4.3.6 Transmitters of the Ion Channels 41 5.6.1 Temperature 61 4.3.7 Hormones of the Receptor 5.6.2 Relation of Agonist Affinity and Efficacy Kinases – Growth Factor Receptors 43 to Distance Traveled Following 4.3.7.1 Insulin 43 Release 61 4.3.7.2 Insulin-Like Growth Factors 43 4.3.7.3 Natriuretic Peptides 43 Part III Receptor Types and 4.3.7.4 Peptide Signal Molecules Important in Function 63 Embryogenesis 43 4.3.7.5 Pituitary Gland 6 Transduction I: Ion Channels and Hormones – Somatotropin and Transporters 65 Prolactin 43 6.1 Introduction 65 4.3.8 Hormones of the Nuclear Receptors 44 6.1.1 Family Relationships 65 4.3.8.1 Steroids 44 6.2 Small Molecule Channels 66 4.3.8.2 Non-Steroid Nuclear Hormones 46 6.2.1 Osmotic and Stretch Detectors 66 4.4 Analgesics and Venoms as Receptor 6.2.2 Voltage-Gated Cation Channels 66 Ligands 46 6.2.2.1 History of Studies on Voltage-Gated Channels 66 5 Receptor Theory 47 6.2.2.2 Structure and Physiology of Ion 5.1 The Materialization of Receptors 47 Channels 68 5.2 Receptor Mechanisms 47 6.2.3 Potassium Channels 68 5.2.1 Binding of Agonist to Receptor 48 6.2.4 Sodium Channels 70 5.2.1.1 Bonds 48 6.2.4.1 Bacterial Na+ Channels 70 5.3 Binding Theory 49 6.2.4.2 Vertebrate Na+ Channels 70 5.3.1 Early Approaches to Understanding 6.2.5 Calcium Channels 71 Receptor Action 49 6.2.6 Non-Voltage-Gated Cation 5.3.1.1 The Occupancy Model 49 Channels – Transient Receptor Potential 5.3.1.2 Processes That Follow Receptor (TRP) Channels 72 Activation 52 6.3 Transporters 73 5.3.1.3 Efficacy and Spare Receptors 52 6.3.1 Pumps and Facilitated Diffusion 73 5.3.2 Modern Approaches to Receptor 6.3.1.1 The SLC Proteins 73 Theory 52 6.3.1.2 The Pumps 74 5.3.2.1 The Two-State Model 52 6.3.2 The Chloride Channel 76 Contents IX 6.4 Major Intrinsic Proteins 76 7.4.1.1 The α Subfamily 99 6.4.1 Water Channels 76 7.4.1.2 The β Subfamily 102 6.4.2 Glycerol Transporters 77 7.4.1.3 The γ Subfamily 102 6.5 Ligand-Gated Ion Channels 77 7.4.1.4 The δ Subfamily 104 6.5.1 Four-TM Domains – the Cys-Loop 7.4.2 Family B – Secretin-Like 104 Receptors 77 7.4.3 Family C – Metabotropic Glutamate and 6.5.1.1 The Four-TM Channels for Cations 78 Sweet/Umami Taste Receptors 104 6.5.1.2 The Four-TM Channels for Anions 80 7.4.3.1 Taste 1 Receptors (T1Rs) 105 6.5.2 Three-TM Domains – Ionotropic 7.4.3.2 Calcium-Sensing Receptors 106 Glutamate Receptors 82 7.4.4 Family D – Adhesion Receptors 106 6.5.2.1 Glutamate-Gated Channels 82 7.4.5 Family F – Frizzled-Smoothened 6.5.2.2 N-Methyl-D-aspartate (NMDA) Receptors 106 Receptor 82 7.4.6 Family E – Cyclic AMP Receptors 106 6.5.2.3 Non-NMDA Receptors 82 7.4.7 Other G-Protein-Coupled Receptor 6.5.3 Two-TM Domains – ATP-Gated Types in Eukaryotes 106 Receptors (P2X) 82 7.4.7.1 Yeast Mating Pheromone Receptors 106 7 Transduction II: G-Protein-Coupled 7.4.7.2 Insect Taste Receptors 106 Receptors 85 7.4.7.3 Nematode Chemoreceptors 106 7.1 Introduction 85 7.1.1 Receptor Function 86 8 Transduction III: Receptor Kinases and 7.1.2 Sensory Transduction 87 Immunoglobulins 107 7.1.2.1 Chemoreception in Non-Mammals 87 8.1 Protein Kinases 107 7.1.2.2 Chemoreception in Mammals 87 8.2 Receptors for Cell Division and 7.2 Families of G-Protein-Coupled Metabolism 108 Receptors 89 8.2.1 Overview of Family Members 108 7.3 Transduction Mechanisms 89 8.2.2 Overall Functions of RTK 108 7.3.1 Discovery of Receptor Control of 8.2.2.1 Extracellular Domains 108 Metabolism – Cyclic AMP and G 8.2.2.2 Intracellular Domains 109 Proteins 89 8.2.3 Receptor Tyrosine Kinase 7.3.1.1 Components of the Process of Metabolic Subfamilies 110 Activation 89 8.2.3.1 EGF Receptor Subfamily 111 7.3.1.2 Discovery of Cyclic AMP 90 8.2.3.2 Insulin Receptor Subfamily 111 7.3.1.3 Discovery of G Proteins 90 8.2.3.3 FGF and PDGF Receptor 7.3.2 Actions of G Proteins 91 Subfamilies 111 7.3.2.1 G-Alpha Proteins 92 8.2.3.4 NGF Receptor Subfamily 111 7.3.2.2 Roles of the Beta and Gamma 8.3 Receptor Serine/Threonine Kinases 112 Subunits 95 8.3.1 Transforming Growth Factor-Beta 7.3.3 Proteins That Enhance (GEF) or Inhibit (TGF-β)Receptor 112 (GAP) GTP Binding 96 8.4 The Guanylyl Cyclase Receptor 7.3.3.1 GEF Protein 96 Subfamily – Natriuretic Peptide 7.3.3.2 GAP Protein 96 Receptors 112 7.3.4 Signal Amplification 97 8.5 Non-Kinase Molecules – LDL 7.3.5 Signal Cessation – Several Processes Receptors 113 Decrease Receptor Activity 97 8.5.1 Cholesterol Transport 113 7.3.6 Interactions between Receptors and G 8.5.2 The Low-Density Lipoprotein (LDL) Proteins 97 Receptor 114 7.3.7 Summary of Actions of GPCRs: Agonists, 8.5.2.1 Clathrin-Coated Pits 114 Receptors, G Proteins, and Signaling 8.6 Cell–Cell Contact Signaling 115 Cascades 98 8.6.1 Notch–Delta Signaling 115 7.4 The Major Families of G Protein-Coupled 8.7 Immune System Receptors, Antibodies, Receptors 99 and Cytokines 115 7.4.1 Family A – Rhodopsin-Like 99 8.7.1 The Innate Immune Responses 115 X Contents 8.7.2 The Cells and Molecules of the Adaptive 10.3.2.1 Other G-Protein-Like Immune System 116 Transducers – Ras 139 8.7.3 T-Cell Receptors and 10.3.2.2 Other G-Protein-Like Immunoglobulins 116 Transducers – Ran 139 8.7.4 Cell-Surface Molecules 117 10.3.3 Cell Aggregation and Development 140 8.7.4.1 The MHC Proteins 117 10.3.3.1 Coaggregation in Bacteria 140 8.7.4.2 Receptors of the B and T Cells 118 10.3.3.2 Aggregation in Eukaryotes 140 10.3.3.3 The Molecules of Cell Adhesion 141 9 Transduction IV: Nuclear Receptors 121 10.4 Complexity in Cross Talk – Roles of 9.1 Introduction 121 PIP3, Akt, and PDK1 141 9.2 Genomic Actions of Nuclear 10.4.1 Signaling Cascades Using PIP3 142 Receptors 122 10.4.2 Integrins 144 9.2.1 Families of Nuclear Receptors 122 10.4.3 Receptor Tyrosine Kinases 144 9.2.2 Transcription Control 122 10.4.4 Cytokine Receptors and the JAK/STAT 9.2.3 Constitutively Active Nuclear Proteins 144 Receptors 122 10.4.5 Combined Cellular Signaling – GPCR 9.2.4 Liganded Receptors 122 and RTK Actions 144 9.2.5 History of Steroid Receptor Studies 123 10.5 Role in Cancer 144 9.2.6 Receptor Structure 123 10.5.1 Constitutive versus Inducible 9.2.7 The Ligand-Binding

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us