Orbital'maneuvers'

Orbital'maneuvers'

Orbital'Maneuvers' Chapter'6' Maneuvers' • We'assume'our'maneuvers'are'“instantaneous”'' • ΔV'changes'can'be'applied'by'changing'the' magnitude'“pump”'or'by'changing'the'direc0on' “crank”' • Rocket'equa0on:'rela0ng'ΔV'and'change'in'mass' m & minitial # initial ΔV = g I ln$ ! or m final = 0 SP $ m ! % final " & ΔV # exp$ ! % g0ISP " 2 'where'g0'='9.806'm/s ''' Isp' • Isp'is'the'specific'impulse'(units'of'seconds)'and' measures'the'performance'of'the'rocket'' ΔV' • ΔV'(delta(V)'represents'the'instantaneous'change'in' velocity'(from'current'velocity'to'the'desired'velocity).' Circular Orbit Velocity ΔV = V2 − V1 µ V = C R Elliptical Orbit Velocity & 2 1 # VE = µ$ − ! % R a " Tangent'Burns' • Ini0ally'you'are'in'a'circular'orbit' Your Initial Orbit with'radius'R1'around'Earth' µ V C1 = R1 R1 Your Spacecraft Tangent'Burns' • Ini0ally'you'are'in'a'circular'orbit' with'radius'R1'around'Earth' µ V C1 = R1 R1 ' R2 • You'perform'a'burn'now'which' puts'in'into'the'red(do^ed'orbit.'' So'you'perform'a'ΔV.' V V V Δ = E1 − C1 ΔV Your new orbit after the ΔV burn Tangent'Burns' • Ini0ally'you'are'in'a'circular'orbit' with'radius'R1'around'Earth' µ V C1 = R1 R1 ' R2 • You'perform'a'burn'now'which' puts'in'into'the'red(do^ed'orbit.'' So'you'perform'a'ΔV.' V V V Δ = E1 − C1 where # 2 1 & 1 V and a R R E1 = µ% − ( = ( 1 + 2 ) $ R1 a ' 2 Hohmann'Transfer' The most efficient 2-burnmaneuver to transfer between 2 co-planar circular orbit ΔV 2 ΔV = ΔV1 + ΔV2 µ & 2R # R1 V $ 2 1! Δ 1 = $ − ! R2 R1 % R1 + R2 " µ & 2R # V $1 1 ! Δ 2 = $ − ! R2 % R1 + R2 " ΔV 1 1 a3 TOF = P = π 2 µ Hohmann'Transfer'(non(circular)' • Another'way'to'view'it'is'using'angular'momentum' ! $ rarp h = 2µ# & " ra + rp % ΔVtotal _3 = ΔVA + ΔVB ΔVtotal _3' = ΔVA' + ΔVB' Hohmann'Transfer'(non(circular)' ! $ V h / r V h / r rArA' A 1 = 1 A A 3 = 3 A h1 = 2µ# & " rA + rA' % V h / r V h / r B 1 = 2 B B 3 = 3 B V = h / r V = h / r ! $ A' 1 1 A' A' 3' 3' A' rBrB' h2 = 2µ# & VB' = h2 / rB' VB' = h3' / rB' " rB + rB' % 1 3' ! $ ΔVA = abs VA −VA rArB ( 3 1) h3 = 2µ# & " rA + rB % ΔV = abs V −V A' ( A' 3 A' 1) ! $ ΔVB = abs VB −VB rA'rB' ( 2 3 ) h3' = 2µ# & " rA' + rB' % ΔV = abs V −V B' ( B' 2 B' 3' ) Bi(Ellip0c'Transfer' Bi(Ellip0c'Transfer' If rc/ra < 11.94 then Hohmann is more efficient If rc/ra > 15.58 then Bi-Elliptic is more efficient Non(Hohmann'Transfers'w/ Common'Line'of'Aspides' Non(Hohmann'Transfers'w/ Common'Line'of'Aspides' rA − rB etransfer = − rA cosθA − rB cosθB " % cosθA − cosθB htransfer = µrArB $ ' # rA cosθA − rB cosθB & A 2 2 ΔVA = V1 +Vtrans − 2V1Vtrans cosΔγ A Δv vr@A − vr@A tanφ = r@A = orbit2 orbit1 v v v Δ ⊥@A ⊥@A orbit2 − ⊥@A orbit1 Non(Hohmann'Transfers'w/ Common'Line'of'Aspides' 2 2 ΔVA = V1 +Vtrans − 2V1Vtrans cosΔγ A " µ / h e sinθ % Δγ = γ −γ γ = tan−1 ( 1) 1 1 A ( trans 1) @A 1 $ ' # h1 / rA & $ ' −1 Vr " % γi = tan & ) −1 (µ / htrans )etrans sinθ1 V γtrans = tan $ ' % ⊥ (i @A # htrans / rA & Apse'Line'Rota0on' Opportunity to transfer from one orbit to another using a single maneuver occurs at intersection points of the orbits Apse Line Rotation Angle η =θ1 −θ2 NOTE: rorbit1@I = rorbit2@I h2 / µ h2 / µ 1 = 2 1+ e1 cosθ1 1+ e2 cosθ2 Apse'Line'Rota0on' Opportunity to transfer from one orbit to another using a single maneuver occurs at intersection points of the orbits Setting θ2 =θ 1 −η and using the following identity cos(θ1 −η) = cosθ1 cosη +sinθ1 sinη Then θ1 has two solution corresponding to point I and J " 2 2 % −1 h1 − h2 θ1 = ζ ± cos $ 2 2 cosζ ' # e1h2 − e2h1 cosη & " 2 % −1 −e2h1 sinη ζ = tan $ 2 2 ' # e1h2 − e2h1 cosη & Apse'Line'Rota0on' Opportunity to transfer from one orbit to another using a single maneuver occurs at intersection points of the orbits Given the orbit information of the two orbits Next, compute r, v⊥i, vri, γi using θ1 and θ2 =θ1 −η 2 h / µ v⊥2 = h2 / r r = 1 1+ e1 cosθ1 vr2 = (µ / h2 )e2 sinθ2 −1 v⊥1 = h1 / r γ 2 = tan (vr2 / v⊥2 ) vr1 = (µ / h1)e1 sinθ1 2 2 v2 = vr2 + v⊥2 −1 γ1 = tan (vr1 / v⊥1) 2 2 2 2 v1 = vr1 + v⊥1 Δv = v1 + v2 − 2v1v2 cos(γ 2 −γ1) Apse'Line'Rota0on' Opportunity to transfer from one orbit to another using a single maneuver occurs at intersection points of the orbits Δv vr@I − vr@I tanφ = r@I = orbit2 orbit1 v v v Δ ⊥@I ⊥@I orbit2 − ⊥@I orbit1 If you want to find the effect of a Δv on orbit 1 at θ1 v + Δv v + Δv v2 tanθ = ( ⊥1 ⊥ )( r1 r ) ⊥1 2 2 / r (v⊥1 + Δv⊥ ) e1 cosθ1 +(2v⊥1 + Δv⊥ )Δv⊥ (µ ) rv ⊥1 (at periapsis) If θ1 = vr = Δv⊥ = 0 then tanη = − Δvr µe1 Apse'Line'Rota0on' Opportunity to transfer from one orbit to another using a single maneuver occurs at intersection points of the orbits Another useful equation: 2 (h1 + r1Δv⊥ ) e1 cosθ1 +(2h1 + r1Δv⊥ )r1Δv⊥ e2 = 2 h1 cosθ2 Plane'Change'Maneuvers' In general a plane change maneuver changes the orbit plane Δv = v2 − v1 = (vr2 − vr1)uˆr + v⊥2uˆ⊥2 − v⊥1uˆ⊥1 Δv = Δv ⋅ Δv δ v2 2 2 2 Δv = (vr2 − vr1) + v⊥1 + v⊥1 − 2v⊥2v⊥1 cosδ v1 or 2 2 # % Δv = v1 + v2 − 2v1v2 $cosΔγ − cosγ1 cosγ 2 (1− cosδ)& where Δγ = γ 2 −γ1 Plane'Change'Maneuvers' In general a plane change maneuver changes the orbit plane If there is no plane change, δ = 0 then 2 2 No plane Δv = v + v − 2v v cosΔγ 1 2 1 2 change and we get the same equation as from slide 130. If v r1 = vr2 = 0 a nd v⊥1 = v 1 a nd v⊥ 2 = v2 then Pure plane 2 2 change Δv = v + v − 2v v cosδ 1 2 1 2 (common line of apisdes) Plane'Change' "δ % " Δi % Pure plane change ΔvPC = 2vC sin$ ' = 2vC sin$ ' # 2 & # 2 & (circular to circular) 2 2 Δv(a) = (v2 − v1) + 4v1v2 sin (δ / 2) Δv(b) = 2v1 sin(δ / 2) + v2 − v1 Δv(c) = v2 − v1 + 2v2 sin(δ / 2) Rendezvous' Catching a moving target: Hohmann transfer assume the target will be there independent of time, but for rendezvousing the target body is always moving. target TIME = 0 n TOF ΔV φ0 = π − 2 ⋅ φ0 where µ n2 = 3 ≡ mean motion spacecraft a2 Rendezvous' Catching a moving target: Hohmann transfer assume the target will be there independent of time, but for rendezvousing the target body is always moving. TIME = TOF n TOF ΔV φ0 = π − target ⋅ φ0 target where µ ntarget = 3 ≡ mean motion spacecraft atarget Wait'Time'(WT)' How long do you wait before you can perform (or initiate) the transfer? TIME = -WT target φ0 φ -φ WT = 0 ntarget − nsc ΔV φ spacecraft Co(orbital'Rendezvous' Chasing your tail Forward thrust to slow Phasing orbit size down target 1/3 & 2 # , 2π −φinitial ) aphasing = $µ* ' ! φ0 $ * 2π ⋅n ' ! % + target ( " ΔV spacecraft Reverse thrust to speed up Patched(Conic' An approximation breaks the interplanetary trajectory into regions where conic approximation is applicable Sphere of Influence 2/5 & m # R a $ planet ! SOI = planet $ ! % mSun " Patched(Conic' An approximation breaks the interplanetary trajectory into regions where conic approximation is applicable • Computational Steps – PATCH 1: Compute the Hohmann transfer ΔVs – PATCH 2: Compute the Launch portion – PATCH 3: Compute the Arrival portion • PATCH 1 – The ΔV1 from the interplanetary Hohmann is V∞ at Earth – The ΔV2 from the interplanetary Hohmann is V∞ at target body arrival Patched(Conic' An approximation breaks the interplanetary trajectory into regions where conic approximation is applicable RSOI Earth Departure V∞ @Earth (assume circular orbit) VEarth 2 & -V * # ΔV = V $ 2 + + ∞@departure ( −1! DEP CDEP + ( $ VC ! %$ , DEP ) "! where µ V = DEP CDEP R CDEP RC@DEP ΔVDE P Patched(Conic' An approximation breaks the interplanetary trajectory into regions where conic approximation is applicable ΔV CA Target Body Capture P (assume circular orbit) 2 & -V * # ΔV = V $ 2 + + ∞@arrival ( −1! CAP CCAP + ( $ VC ! %$ , CAP ) "! RC@CAP where RSOI µ V = CAP CCAP R CCAP VMars V∞ @Mars Patched(Conic' An approximation breaks the interplanetary trajectory into regions where conic approximation is applicable Total Mission ΔV for a simple 2 burn transfer ΔVMISSION = ΔVDEP + ΔVCAP ΔVDE P ΔVCA P Planetary'Flyby' Getting a boost • Gravity(assists'or'flybys'are'used'to' – Reduce'or'increase'the'heliocentric'(wrt.'Sun)'energy'of'the'spacecra6' (orbit'pumping),'or' – Change'the'heliocentric'orbit'plane'of'the'spacecra6'(orbit'cranking),' or'both' Planetary'Flyby' Getting a boost Planetary'Flyby' Getting a boost Planetary'Flyby' Getting a boost Stationary Jupiter Moving Jupiter Planetary'Flyby' Getting a boost Fg Fg Vplane t Decrease energy wrt. Sun Increases energy wrt. Sun Planetary'Flyby' Getting a boost ΔV • V∞'leveraging'is'the'use' of'deep'space'maneuvers' to'modify'the'V∞'at'a' body.''A'typical'example' post is'an'Earth'launch,'ΔV' maneuver If no maneuver'(usually'near' maneuver apoapsis),'followed'by'an' Earth'gravity'assist'(ΔV( EGA).'.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    38 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us