ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C

ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C

<p>TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 7, Pages 2689–2703 S 0002-9947(01)02730-1 Article electronically published on March 12, 2001 </p><p><strong>ON THE SHELLABILITY OF THE ORDER COMPLEX OF THE SUBGROUP LATTICE OF A FINITE GROUP </strong></p><p>JOHN SHARESHIAN <br>Abstract. We show that the order complex of the subgroup lattice of a finite group G is nonpure shellable if and only if G is solvable. A by-product of the proof that nonsolvable groups do not have shellable subgroup lattices is the determination of the homotopy types of the order complexes of the subgroup lattices of many minimal simple groups. </p><p>1. Introduction </p><p>We will show that the order complex of the subgroup lattice of a finite group G is (nonpure) shellable if and only if G is solvable.&nbsp;The proof of nonshellability in the nonsolvable case involves the determination of the homotopy type of the order complexes of the subgroup lattices of many minimal simple groups. <br>We begin with some history and basic definitions.&nbsp;It is assumed that the reader is familiar with some of the rudiments of algebraic topology and finite group theory. No distinction will be made between an abstract simplicial complex ∆ and an arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will be called facets of ∆. </p><p><strong>Definition 1.1. </strong>A simplicial complex ∆ is <strong>shellable </strong>if the facets of ∆ can be </p><p>ordered σ<sub style="top: 0.1194em;">1</sub>, . . .&nbsp;, σ<sub style="top: 0.1194em;">n </sub>so that for all 1 ≤ i &lt; k ≤ n there exists some 1 ≤ j &lt; k and x ∈ σ<sub style="top: 0.1199em;">k </sub>such that σ<sub style="top: 0.12em;">i </sub>∩ σ<sub style="top: 0.12em;">k </sub>⊆ σ<sub style="top: 0.12em;">j </sub>∩ σ<sub style="top: 0.12em;">k </sub>= σ<sub style="top: 0.12em;">k </sub>\ {x}. The&nbsp;list σ<sub style="top: 0.12em;">1</sub>, . . .&nbsp;, σ<sub style="top: 0.12em;">n </sub>is called a shelling of ∆. </p><p>Note that this definition does not require that ∆ be pure.&nbsp;Pure shellable complexes are discussed in [1], and nonpure shellable complexes are introduced in [2]. </p><p><strong>Definition 1.2. </strong>Let P be a partially ordered set. The order complex ∆(P) is the simplicial complex whose k-simplices are chains of length k from P. </p><p>Note that a chain of length k from a poset P contains k + 1 elements.&nbsp;We will call P shellable if and only if ∆(P) is shellable. </p><p><strong>Definition 1.3. </strong>Let G be a finite group. </p><p>(1) L(G) is the lattice of subgroups of G. (2) L(G) := L(G) \ {1, G}. (3) l(G) is the length of the longest chain in L(G). </p><p>Received by the editors February 18, 1999 and, in revised form, May 1, 1999. </p><p>1991 Mathematics Subject Classification.&nbsp;Primary 06A11; Secondary 20E15. </p><p></p><ul style="display: flex;"><li style="flex:1">c</li><li style="flex:1">ꢀ2001 American Mathematical Society </li></ul><p></p><p>2689 </p><p><a href="/goto?url=https://www.ams.org/journal-terms-of-use" target="_blank">License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use </a></p><p></p><ul style="display: flex;"><li style="flex:1">2690 </li><li style="flex:1">JOHN SHARESHIAN </li></ul><p></p><p>It follows immediately from Definition 1.1 that L(G) is shellable if and only if <br>L(G) is shellable.&nbsp;We will call G shellable if and only if L(G) is shellable.&nbsp;As stated above, we will prove the following theorem. </p><p><strong>Theorem 1.4. </strong>A finite group G is shellable if and only if G is solvable. </p><p>The relation between subgroup lattices and pure shellability is already wellunderstood. Note&nbsp;that for any poset P, the order complex ∆(P) is pure if and only if P is graded, that is, every maximal chain in P has the same length.&nbsp;In [10], Iwasawa showed that for a finite group G, L(G) is graded if and only if G is supersolvable. In [14], Stanley introduced supersolvable lattices, which are lattices which share some important combinatorial properties with subgroup lattices of finite supersolvable groups.&nbsp;In [1], Bj¨orner showed that supersolvable lattices are shellable, thereby showing that the three conditions G is supersolvable, ∆(L(G)) is pure, and ∆(L(G)) is shellable and pure are equivalent. <br>It follows from Theorem 1.4 and the work of Bjo¨rner and Wachs in [2] that if <br>G is solvable then ∆(L(G)) has the homotopy type of a wedge of spheres.&nbsp;The following stronger result was obtained by Kratzer and Th´evenaz in [11]. </p><p><strong>Theorem 1.5 </strong>([11, Corollaire 4.10])<strong>. </strong>Let G be a finite solvable group with chief </p><p>series 1 = G<sub style="top: 0.1198em;">0 </sub>/ G<sub style="top: 0.1198em;">1 </sub>/ . . . / G<sub style="top: 0.1198em;">r−1 </sub>/ G<sub style="top: 0.12em;">r </sub>= G. For&nbsp;1 ≤ i &lt; r, let m<sub style="top: 0.12em;">i </sub>be the number of complements to G<sub style="top: 0.12em;">i</sub>/G<sub style="top: 0.12em;">i−1 </sub>in G/G<sub style="top: 0.12em;">i−1</sub>. Then&nbsp;∆(L(G)) has the homotopy type of a </p><p>i=1 </p><p>Q</p><p>wedge of m = <sup style="top: -0.42em;">r−1 </sup>m<sub style="top: 0.12em;">i </sub>spheres of dimension r − 2. </p><p>It follows that the only reduced homology group of ∆ = ∆(L(G)) which can be </p><p>e</p><p>nontrivial is H<sub style="top: 0.12em;">r−2</sub>(∆), which is free of dimension m. In [16], Th´evenaz investigates the linear representation of G on this homology group which is determined by the action of G on ∆ by conjugation.&nbsp;In doing so, he obtains an even stronger result than Theorem 1.5.&nbsp;Namely, assume that m &gt; 0 (where m is as in Theorem 1.5), and fix a chief series 1 = G<sub style="top: 0.1198em;">0 </sub>/ . . . / G<sub style="top: 0.1198em;">r </sub>= G. Let&nbsp;Γ(G) be the set of all chains 1 = C<sub style="top: 0.1199em;">r </sub>&lt; C<sub style="top: 0.1199em;">r−1 </sub>&lt; . . . &lt; C<sub style="top: 0.12em;">0 </sub>= G such that each C<sub style="top: 0.12em;">i </sub>is a complement to G<sub style="top: 0.12em;">i </sub>in G. For γ ∈ Γ(G), let S<sub style="top: 0.12em;">γ </sub>be the poset obtained by removing 1 and G from the sublattice of </p><p>S</p><p>L(G) generated by all the G<sub style="top: 0.12em;">i </sub>and all the C<sub style="top: 0.12em;">i</sub>. Let&nbsp;K(G) =&nbsp;<sub style="top: 0.25em;">γ∈Γ(G) </sub>S<sub style="top: 0.12em;">γ</sub>. Th´evenaz shows (see Theorem 1.4 of [16]) that </p><p>• the identity embedding of K(G) into L(G) induces a homotopy equivalence of order complexes, </p><p>W</p><p>• ∆(K(G)) ' <sub style="top: 0.24em;">γ∈Γ(G) </sub>∆(S<sub style="top: 0.12em;">γ</sub>), and • for all γ ∈ Γ(G), ∆(S<sub style="top: 0.12em;">γ</sub>) has the homotopy type of an (r − 2)-sphere. <br>So, the spheres in the given wedge are indexed by the chains γ of complements to the elements of a given chief series. Our proof that ∆(L(G)) is shellable when G is solvable uses the theory of recursive coatom orderings (see Section 5 of [2]), and we are unable to obtain the decomposition of Th´evenaz or even the numerical result of Kratzer and Th´evenaz as a corollary.&nbsp;However, Th´evenaz’ result suggests that the theory of EL-shellability (again, see section 5 of [2]) might be applied to the subgroup lattice of a solvable group, as in the following conjecture.&nbsp;As noted in [16], all chains γ ∈ Γ(G) are maximal chains in L(G). </p><p><strong>Conjecture 1.6. </strong>Let G be a finite solvable group.&nbsp;Then L(G) admits an EL- labeling in which the falling maximal chains are exactly the elements of Γ(G). </p><p><a href="/goto?url=https://www.ams.org/journal-terms-of-use" target="_blank">License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use </a></p><p></p><ul style="display: flex;"><li style="flex:1">SHELLABILITY OF SUBGROUP LATTICES </li><li style="flex:1">2691 </li></ul><p></p><p>I thank Anders Bj¨orner, Richard Lyons and Volkmar Welker for their encouragement and their helpful comments. </p><p>2. Homotopy equivalence of order complexes and properties of shellable complexes </p><p>It this section we will review some known results about order complexes and shellable complexes which will be used throughout the paper.&nbsp;The reader who is familiar with the main results in these areas can skip this section and refer back to it when necessary. We begin with some homotopy results of Quillen. </p><p><strong>Definition 2.1. </strong>Let P, Q&nbsp;be posets. </p><p>(1) A&nbsp;morphism f : P → Q is a function such that x ≤<sub style="top: 0.1196em;">P </sub>y implies f(x) ≤<sub style="top: 0.12em;">Q </sub>f(y). (2) If&nbsp;f : P → Q is a morphism, then for y ∈ Q define </p><p>f<sub style="top: 0.1199em;">y </sub>:= {x ∈ P : f(x) ≤ y} </p><p>and </p><p>f<sup style="top: -0.3401em;">y </sup>:= {x ∈ P : f(x) ≥ y} . </p><p><strong>Proposition 2.2 </strong>([12, 1.5])<strong>. </strong>If a poset P contains a unique minimal element or a </p><p>unique maximal element, then ∆(P) is contractible. </p><p><strong>Proposition 2.3 </strong>([12, Proposition 1.6])<strong>. </strong>Let f : P → Q be a morphism of posets. </p><p>If ∆(f<sub style="top: 0.1198em;">y</sub>) is contractible for all y ∈ Q or ∆(f<sup style="top: -0.3002em;">y</sup>) is contractible for all y ∈ Q, then f induces a homotopy equivalence between ∆(P) and ∆(Q). </p><p><strong>Corollary 2.4. </strong>Let P be a finite poset. Set </p><p>S = {x ∈ P : x is covered by a unique element in P} and <br>T = {x ∈ P : x covers a unique element in P} . <br>Then for any S<sup style="top: -0.3002em;">0 </sup>⊆ S and T <sup style="top: -0.3002em;">0 </sup>⊆ T , ∆(P) is homotopy equivalent to both ∆(P \ S<sup style="top: -0.3002em;">0</sup>) and ∆(P \ T <sup style="top: -0.3001em;">0</sup>). </p><p>Proof. Let i : P \ S<sup style="top: -0.3001em;">0 </sup>,→ P be the identity embedding.&nbsp;Fix y ∈ P. If&nbsp;y ∈ S<sup style="top: -0.3001em;">0 </sup>then i<sup style="top: -0.3em;">y </sup>= {x ∈ P \ S<sup style="top: -0.3em;">0 </sup>: x ≥ y}. If y ∈ S<sup style="top: -0.3em;">0</sup>, let z<sub style="top: 0.12em;">0 </sub>be the unique element of P covering y. For i ≥ 0, if z<sub style="top: 0.12em;">i </sub>∈ S<sup style="top: -0.3em;">0 </sup>let z<sub style="top: 0.12em;">i+1 </sub>be the unique element of P covering z<sub style="top: 0.12em;">i</sub>. Since&nbsp;P is finite, there is a smallest k such that z<sub style="top: 0.1199em;">k </sub>∈ S<sup style="top: -0.3001em;">0</sup>, and i<sup style="top: -0.3001em;">y </sup>= {x ∈ P \ S<sup style="top: -0.3001em;">0 </sup>: x ≥ z<sub style="top: 0.1199em;">k</sub>}. In any case, ∆(i<sup style="top: -0.3em;">y</sup>) is contractible by Proposition 2.2, and i induces a homotopy equivalence of order complexes by Proposition 2.3. The proof for P \ T<sup style="top: -0.31em;">0 </sup>is similar. </p><p><strong>Corollary 2.5. </strong>Let L be a finite lattice and let M be the sublattice of L consisting </p><p></p><ul style="display: flex;"><li style="flex:1">ˆ</li><li style="flex:1">ˆ</li></ul><p></p><p>of the minimum element 0, the maximum element 1, and all x ∈ L such that </p><p>ꢀ<br>V</p><p>ˆ ˆ </p><p>x = <sub style="top: 0.25em;">c∈C </sub>c for some set C of coatoms of L. For X ∈ {L, M} let X = X \ 0, 1 . Then ∆(L) and ∆(M) are homotopy equivalent. </p><p>Proof. Let i : M → L be the identity embedding, and let C be the set of coatoms </p><p>V</p><p>of L. For&nbsp;each x ∈ L, let C(x) = {c ∈ C : x ≤ c}. Then&nbsp;<sub style="top: 0.25em;">c∈C(x) </sub>c is the unique minimum element of i<sup style="top: -0.3em;">x</sup>. The corollary now follows from Propositions 2.2 and 2.3. </p><p>Next we state a well-known collapsibility result (see [8]). </p><p><a href="/goto?url=https://www.ams.org/journal-terms-of-use" target="_blank">License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use </a></p><p></p><ul style="display: flex;"><li style="flex:1">2692 </li><li style="flex:1">JOHN SHARESHIAN </li></ul><p></p><p><strong>Lemma 2.6. </strong>Let ∆ be a simplicial complex and let τ be a face of ∆ such that τ is properly contained in a unique facet of ∆. Let&nbsp;∆<sub style="top: 0.12em;">τ </sub>be the complex obtained by removing from ∆ all faces containing τ. Then ∆ and ∆<sub style="top: 0.1199em;">τ </sub>are homotopy equivalent. </p><p>The following results on shellable complexes appear in [2]. <br><strong>Definition 2.7. </strong>Let ∆ be a finite simplicial complex. <br>(1) For&nbsp;a simplex σ ∈ ∆, d(σ) := max {|τ| : σ ⊆ τ ∈ ∆}. (2) For 0 ≤ j ≤ i, f<sub style="top: 0.1197em;">i,j </sub>is the number of simplices σ ∈ ∆ such that |σ| = j and d(σ) = i. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p>P</p><p></p><ul style="display: flex;"><li style="flex:1">j</li><li style="flex:1">i−k </li></ul><p></p><p>(3) For&nbsp;0 ≤ j ≤ i, h<sub style="top: 0.1199em;">i,j </sub>:= <sub style="top: 0.25em;">k=0</sub>(−1)<sup style="top: -0.3em;">j−k </sup></p><p>f<sub style="top: 0.12em;">i,k</sub>. </p><p>j−k </p><p><strong>Definition 2.8. </strong>Let ∆ be a finite simplicial complex and let σ<sub style="top: 0.1199em;">1</sub>, . . .&nbsp;, σ<sub style="top: 0.1199em;">n </sub>be a shelling of ∆. <br>(1) R(σ<sub style="top: 0.1199em;">k</sub>) := {x ∈ σ<sub style="top: 0.1199em;">k </sub>: σ<sub style="top: 0.1199em;">k </sub>\ {x} ⊆ σ<sub style="top: 0.1199em;">i </sub>for some i &lt; k}. (2) Γ<sub style="top: 0.12em;">j </sub>:= {σ<sub style="top: 0.12em;">k </sub>: |σ<sub style="top: 0.12em;">k</sub>| = j and R(σ<sub style="top: 0.12em;">k</sub>) = σ<sub style="top: 0.12em;">k</sub>}. </p><p><strong>Theorem 2.9 </strong>([2, Theorems 3.4 and 4.1])<strong>. </strong>Let ∆ be a finite simplicial complex </p><p>and let σ<sub style="top: 0.1199em;">1</sub>, . . .&nbsp;, σ<sub style="top: 0.1199em;">n </sub>be a shelling of ∆. <br>(1) Then h<sub style="top: 0.1199em;">i,j </sub>is the number of σ<sub style="top: 0.12em;">k </sub>such that |σ<sub style="top: 0.12em;">k</sub>| = i and |R(σ<sub style="top: 0.12em;">k</sub>)| = j. In particular, h<sub style="top: 0.12em;">j,j </sub>= |Γ<sub style="top: 0.12em;">j</sub>| and h<sub style="top: 0.12em;">i,j </sub>≥ 0 for all i, j. <br>(2) Also, ∆ has the homotopy type of a wedge of spheres, consisting of h<sub style="top: 0.12em;">j,j </sub>spheres </p><p>˜</p><p>of dimension j − 1 for each j. In particular, dim(H<sub style="top: 0.1199em;">j−1</sub>(∆)) = h<sub style="top: 0.12em;">j,j </sub>is at most the number of facets of ∆ having dimension j − 1. </p><p><strong>Definition 2.10. </strong>Let ∆ be an abstract simplicial complex of finite dimension d. For each 0 ≤ r ≤ s ≤ d, define the complex </p><p>(r,s) </p><p></p><ul style="display: flex;"><li style="flex:1">∆</li><li style="flex:1">:= {τ ∈ ∆ : dim(τ) ≤ s and τ ⊆ σ for some σ ∈ ∆ with dim(σ) ≥ r} . </li></ul><p></p><p><strong>Theorem 2.11 </strong>([2, Theorem 2.9])<strong>. </strong>If ∆ is a shellable complex of finite dimension </p><p>d, then ∆<sup style="top: -0.3001em;">(r,s) </sup>is shellable for all 0 ≤ r ≤ s ≤ d. </p><p><strong>Definition 2.12. </strong>Let P be a finite poset with a unique minimum element 0 and a <br>ˆ<br>ˆunique maximum element 1. We say that P admits a recursive coatom ordering if </p><p>ꢀ</p><p>ˆ ˆ <br>P = 0, 1 or&nbsp;if there is an ordering m<sub style="top: 0.1199em;">1</sub>, . . .&nbsp;, m<sub style="top: 0.1199em;">r </sub>of the coatoms of P which satisfies </p><p>the following two properties. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>ˆ<br>(R) For&nbsp;all j ∈ [r], the poset P<sub style="top: 0.1199em;">j </sub>= 0, m<sub style="top: 0.1199em;">j </sub>admits a recursive coatom ordering in </p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>ˆwhich the coatoms of P<sub style="top: 0.1199em;">j </sub>which are contained in a poset P<sub style="top: 0.1199em;">i </sub>= 0, m<sub style="top: 0.1199em;">i </sub>for some </p><p>i &lt; j come before all other coatoms. <br>(S) For all 1 ≤ i &lt; k ≤ r and x ∈ P, if x ≤ m<sub style="top: 0.1198em;">i </sub>and x ≤ m<sub style="top: 0.1198em;">k</sub>, then there exist some j &lt; k and some coatom w of P<sub style="top: 0.12em;">k </sub>such that x ≤ w ≤ m<sub style="top: 0.12em;">j</sub>. </p><p>Since the posets we will work with are lattices, we can replace condition (S) in <br>Definition 2.12 by the equivalent condition described below.&nbsp;The equivalence of the given conditions follows immediately from the definition of a lattice. </p><p><strong>Proposition 2.13. </strong>Let L be a finite lattice, and let m<sub style="top: 0.1197em;">1</sub>, . . .&nbsp;, m<sub style="top: 0.1197em;">r </sub>be an ordering of the coatoms of L. This&nbsp;ordering satisfies condition (S) of Definition 2.12 if and only if it satisfies the following condition. <br>(T) For all 1 ≤ i &lt; j ≤ r there exists some k &lt; j such that m<sub style="top: 0.1198em;">i </sub>∧ m<sub style="top: 0.1198em;">j </sub>≤ m<sub style="top: 0.1198em;">k </sub>∧ m<sub style="top: 0.1198em;">j </sub></p><p></p><ul style="display: flex;"><li style="flex:1">ꢃ</li><li style="flex:1">ꢄ</li></ul><p></p><p>ˆ</p><p>and m<sub style="top: 0.12em;">k </sub>∧ m<sub style="top: 0.12em;">j </sub>is a coatom of&nbsp;0, m<sub style="top: 0.12em;">j </sub>. </p><p><a href="/goto?url=https://www.ams.org/journal-terms-of-use" target="_blank">License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use </a></p><p></p><ul style="display: flex;"><li style="flex:1">SHELLABILITY OF SUBGROUP LATTICES </li><li style="flex:1">2693 </li></ul><p></p><p>The next result, which follows immediately from Theorems 5.8 and 5.11 of [2], shows that in order to prove that G is shellable it suffices to show that L(G) admits a recursive coatom ordering. </p><p><strong>Theorem 2.14 </strong>(Bj¨orner-Wachs)<strong>. </strong>Let P be a finite poset with a unique minimum </p><p></p><ul style="display: flex;"><li style="flex:1">ˆ</li><li style="flex:1">ˆ</li></ul><p></p><p>element 0 and a unique maximum element 1. If&nbsp;P admits a recursive coatom ordering, then P is shellable. </p><p>3. Shellable groups are solvable </p><p>In this section it will be shown that if a finite group G is shellable then G must be solvable. This result will be achieved by reducing the problem to the examination of the minimal simple groups. Recall that a minimal simple group is a nonabelian finite simple group all of whose proper subgroups are solvable.&nbsp;The reduction is achieved by applying an elementary result of Bjo¨rner on shellable posets.&nbsp;Recall that a section of a finite group G is a quotient group of a subgroup of G. If G is a nonsolvable finite group, then some section of G is a minimal simple group. </p><p><strong>Proposition 3.1. </strong>If a finite group G is shellable, then every section of G is shellable. </p><p>Proof. Proposition 4.2 of [1] says that if a graded poset P is shellable then every interval in P is shellable.&nbsp;It is straightforward to adapt the proof of this proposition to the nongraded case.&nbsp;Now if N E H ≤ G then the interval [N, H] in L(G) is isomorphic to L(H/N), and our proposition follows immediately. </p><p>The goal of this section is achieved by proving the following theorem. </p><p><strong>Theorem 3.2. </strong>A minimal finite simple group is not shellable. </p><p>The minimal finite simple groups were determined by Thompson, well before the classification of finite simple groups was achieved. A list is given below. </p><p><strong>Theorem 3.3 </strong>([17, Corollary 1])<strong>. </strong>A finite simple group all of whose proper sub- </p><p>groups are solvable is isomorphic to one of the groups listed below. </p><p>(A) L<sub style="top: 0.1197em;">2</sub>(p) with p ≥ 5 prime and p ≡ 1, 4 mod 5. </p><p>(B) L<sub style="top: 0.1199em;">2</sub>(2<sup style="top: -0.3001em;">p</sup>) with p prime. (C) L<sub style="top: 0.12em;">2</sub>(3<sup style="top: -0.3em;">p</sup>) with p ≥ 3 prime. (D) Sz(2<sup style="top: -0.3em;">p</sup>) with p ≥ 3 prime. </p><p>(E) SL<sub style="top: 0.1199em;">3</sub>(3). </p><p></p><ul style="display: flex;"><li style="flex:1">∼</li><li style="flex:1">∼</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">Note that L (4) L (5) A , where A is the alternating group on five symbols. </li><li style="flex:1">=</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">5</li><li style="flex:1">5</li></ul><p></p><p>The structures of the subgroup lattices of the minimal simple groups are wellunderstood, and Theorem 3.2 will be proved by careful examination of each of the five classes of groups given above.&nbsp;We begin by determining all nontrivial subgroups of G which are intersections of maximal subgroups when G is one of the groups described in cases (A) through (D). In what follows, Z<sub style="top: 0.1197em;">n </sub>denotes a cyclic group of </p><p>a</p><p>order n and D<sub style="top: 0.12em;">n </sub>denotes a dihedral group of order n. For&nbsp;a prime p, E<sub style="top: 0.12em;">p </sub>denotes an elementary abelian group of order p<sup style="top: -0.3em;">a</sup>. For&nbsp;any groups X and Y , X.Y denotes a split extension of a group isomorphic to X by a group of automorphisms of X </p><p></p><ul style="display: flex;"><li style="flex:1">∼</li><li style="flex:1">∼</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">isomorphic to Y . Also,&nbsp;a.b will denote X.Y if X </li></ul><p>denote the symmetric and alternating groups on n letters, respectively. </p><p>Z and Y </p><p></p><ul style="display: flex;"><li style="flex:1">Z . S and A<sub style="top: 0.12em;">n </sub></li><li style="flex:1">=</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">a</li><li style="flex:1">b</li><li style="flex:1">n</li></ul><p></p><p><a href="/goto?url=https://www.ams.org/journal-terms-of-use" target="_blank">License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use </a></p><p></p><ul style="display: flex;"><li style="flex:1">2694 </li><li style="flex:1">JOHN SHARESHIAN </li></ul><p></p><p>For a prime power q, all subgroups of L<sub style="top: 0.12em;">2</sub>(q) are listed in [4].&nbsp;Those subgroups of L<sub style="top: 0.12em;">2</sub>(q) which are intersections of maximal subgroups are determined in [7].&nbsp;The results when L<sub style="top: 0.1199em;">2</sub>(q) is a minimal simple group are as follows. </p><p><strong>Lemma 3.4. </strong>Let p &gt; 7 be a prime such that L = L<sub style="top: 0.1199em;">2</sub>(p) is a minimal simple group. The maximal subgroups of L are those on the following list. </p><p>|L| </p><p></p><ul style="display: flex;"><li style="flex:1">• One conjugacy class of </li><li style="flex:1">D<sub style="top: 0.12em;">p−1</sub>. </li></ul><p></p><p>p−1 </p><p>|L| </p><p>• One class of </p><p>D<sub style="top: 0.12em;">p+1</sub>. </p><p>p+1 </p><p></p><ul style="display: flex;"><li style="flex:1">• One class of p + 1 p.<sup style="top: -0.37em;">p−1 </sup></li><li style="flex:1">.</li></ul><p></p><p>2</p><p>|L| </p><p>• Two classes of </p><p>S<sub style="top: 0.12em;">4</sub>, if p ≡ 1, 7 mod 8. </p><p>24 </p><p>|L| </p><p>• One class of </p><p>A<sub style="top: 0.12em;">4</sub>, if p ≡ 3, 5 mod 8. </p><p>12 </p><p>Furthermore, the nontrivial nonmaximal subgroups of L which are intersections of maximal subgroups are those on the following list. </p><p>|L| </p><p>• One or two classes containing a total of </p><p>D<sub style="top: 0.12em;">8</sub>, if p ≡ 1, 7 mod 8. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us