§7.3 the Jacobi and Gauss-Siedel Iterative Techniques N×N I Problem: to Solve Ax = B for a ∈ R

§7.3 the Jacobi and Gauss-Siedel Iterative Techniques N×N I Problem: to Solve Ax = B for a ∈ R

0 0 1 Matrix splitting B a2;1 0 C B C B . .. C A = diag (a1;1; a2;2; ··· ; an;n) + B . C B C @ an−1;1 an−1;2 ··· 0 A an;1 an;2 ··· an;n−1 0 0 1 0 a1;2 ··· a1;n−1 a1;n B 0 ··· a2;n−1 a2;n C B C B .. C + B . C B C @ 0 an−1;n A 0 0 1 0 1 0 1 B C B C B C def B C B C B C = D − L − U = B C − B C − B C : @ A @ A @ A x7.3 The Jacobi and Gauss-Siedel Iterative Techniques n×n I Problem: To solve Ax = b for A 2 R . I Methodology: Iteratively approximate solution x. No GEPP. 0 1 0 1 0 1 B C B C B C def B C B C B C = D − L − U = B C − B C − B C : @ A @ A @ A x7.3 The Jacobi and Gauss-Siedel Iterative Techniques n×n I Problem: To solve Ax = b for A 2 R . I Methodology: Iteratively approximate solution x. No GEPP. 0 0 1 Matrix splitting B a2;1 0 C B C B . .. C A = diag (a1;1; a2;2; ··· ; an;n) + B . C B C @ an−1;1 an−1;2 ··· 0 A an;1 an;2 ··· an;n−1 0 0 1 0 a1;2 ··· a1;n−1 a1;n B 0 ··· a2;n−1 a2;n C B C B .. C + B . C B C @ 0 an−1;n A 0 x7.3 The Jacobi and Gauss-Siedel Iterative Techniques n×n I Problem: To solve Ax = b for A 2 R . I Methodology: Iteratively approximate solution x. No GEPP. 0 0 1 Matrix splitting B a2;1 0 C B C B . .. C A = diag (a1;1; a2;2; ··· ; an;n) + B . C B C @ an−1;1 an−1;2 ··· 0 A an;1 an;2 ··· an;n−1 0 0 1 0 a1;2 ··· a1;n−1 a1;n B 0 ··· a2;n−1 a2;n C B C B .. C + B . C B C @ 0 an−1;n A 0 0 1 0 1 0 1 B C B C B C def B C B C B C = D − L − U = B C − B C − B C : @ A @ A @ A 0 10 −1 2 0 1 B −1 11 −1 3 C Ex: Matrix splitting for A = B C @ 2 −1 10 −1 A 0 3 −1 8 0 1 0 1 0 1 B C B C B C B C B C B C A = B C − B C − B C @ A @ A @ A 0 0 1 0 0 1 −2 0 1 B 1 0 C B 0 1 −3 C = diag (10; 11; 10; 8) − B C − B C @ −2 1 0 A @ 0 1 A 0 −3 1 0 0 Gauss-Siedel Method: Rewrite x = (D − L)−1 U x + (D − L)−1 b: Gauss-Siedel iteration with given x(0), x(k+1) = (D − L)−1 U x(k) + (D − L)−1 b; for k = 0; 1; 2; ··· : The Jacobi and Gauss-Siedel Methods for solving Ax = b Jacobi Method: With matrix splitting A = D − L − U, rewrite x = D−1 (L + U) x + D−1 b: Jacobi iteration with given x(0), x(k+1) = D−1 (L + U) x(k) + D−1 b; for k = 0; 1; 2; ··· : The Jacobi and Gauss-Siedel Methods for solving Ax = b Jacobi Method: With matrix splitting A = D − L − U, rewrite x = D−1 (L + U) x + D−1 b: Jacobi iteration with given x(0), x(k+1) = D−1 (L + U) x(k) + D−1 b; for k = 0; 1; 2; ··· : Gauss-Siedel Method: Rewrite x = (D − L)−1 U x + (D − L)−1 b: Gauss-Siedel iteration with given x(0), x(k+1) = (D − L)−1 U x(k) + (D − L)−1 b; for k = 0; 1; 2; ··· : Jacobi iteration with x(0) = 0, for k = 0; 1; 2; ··· (k+1) −1 (k) −1 xJ = D (L + U) xJ + D b 0 1 2 1 0 6 1 0 10 − 10 0 10 1 1 3 25 B 11 0 11 − 11 C (k) B 11 C = B 2 1 1 C xJ + B 11 C @ − 10 10 0 10 A @ − 10 A 3 1 15 0 − 8 8 0 8 Ex: Jacobi Method for Ax = b, with 0 10 −1 2 0 1 0 6 1 B −1 11 −1 3 C B 25 C A = B C ; b = B C @ 2 −1 10 −1 A @ −11 A 0 3 −1 8 15 A = D − L − U 0 0 1 0 0 1 −2 0 1 B 1 0 C B 0 1 −3 C = diag (10; 11; 10; 8) − B C − B C : @ −2 1 0 A @ 0 1 A 0 −3 1 0 0 Ex: Jacobi Method for Ax = b, with 0 10 −1 2 0 1 0 6 1 B −1 11 −1 3 C B 25 C A = B C ; b = B C @ 2 −1 10 −1 A @ −11 A 0 3 −1 8 15 A = D − L − U 0 0 1 0 0 1 −2 0 1 B 1 0 C B 0 1 −3 C = diag (10; 11; 10; 8) − B C − B C : @ −2 1 0 A @ 0 1 A 0 −3 1 0 0 Jacobi iteration with x(0) = 0, for k = 0; 1; 2; ··· (k+1) −1 (k) −1 xJ = D (L + U) xJ + D b 0 1 2 1 0 6 1 0 10 − 10 0 10 1 1 3 25 B 11 0 11 − 11 C (k) B 11 C = B 2 1 1 C xJ + B 11 C @ − 10 10 0 10 A @ − 10 A 3 1 15 0 − 8 8 0 8 Gauss-Siedel iteration with x(0) = 0, for k = 0; 1; 2; ··· (k+1) −1 −1 xGS = (D − L) U xGS + (D − L) b 0 10 1−1 00 0 1 −2 0 1 1 B −1 11 C BB 0 1 −3 C (k)C = B C BB C x C @ 2 −1 10 A @@ 0 1 A GS A 0 3 −1 8 0 0 6 1 10 25 B 11 C + B 11 C : @ − 10 A 15 8 Ex: Gauss-Siedel Method for Ax = b A = D − L − U 0 10 1 0 0 1 −2 0 1 B −1 11 C B 0 1 −3 C = B C − B C : @ 2 −1 10 A @ 0 1 A 0 3 −1 8 0 Ex: Gauss-Siedel Method for Ax = b A = D − L − U 0 10 1 0 0 1 −2 0 1 B −1 11 C B 0 1 −3 C = B C − B C : @ 2 −1 10 A @ 0 1 A 0 3 −1 8 0 Gauss-Siedel iteration with x(0) = 0, for k = 0; 1; 2; ··· (k+1) −1 −1 xGS = (D − L) U xGS + (D − L) b 0 10 1−1 00 0 1 −2 0 1 1 B −1 11 C BB 0 1 −3 C (k)C = B C BB C x C @ 2 −1 10 A @@ 0 1 A GS A 0 3 −1 8 0 0 6 1 10 25 B 11 C + B 11 C : @ − 10 A 15 8 0 1 1 B 2 C Jacobi vs. Gauss-Siedel: solution x = B C. @ −1 A 1 Convergence Comparision, Jacobi vs. G-S 10 0 Jacobi G-S 10 -2 10 -4 10 -6 10 -8 10 -10 10 -12 10 -14 10 -16 0 5 10 15 20 25 30 35 40 45 50 General Iteration Methods To solve A x = b with matrix splitting A = D − L − U, I Jacobi Method: (k+1) −1 (k) −1 xJ = D (L + U) xJ + D b: I Gauss-Siedel Method: (k+1) −1 (k) −1 xGS = (D − L) U xGS + (D − L) b: General Iteration Method: for k = 0; 1; 2; ··· x(k+1) = T x(k) + c: Next: convergence analysis on General Iteration Method Proof: Assume ρ(T ) < 1. Then (1) has unique solution x(∗). x(k+1) − x(∗) = T x(k) − x(∗) = T 2 x(k−1) − x(∗) = ··· = T k+1 x(0) − x(∗) =) 0: Conversely, if ··· (omitted) General Iteration: x(k+1) = T x(k) + c for k = 0; 1; 2; ··· Thm: The following statements are equivalent I ρ(T ) < 1. I The equation x = T x + c (1) has a unique solution and fx(k)g converges to this solution from any x(0). General Iteration: x(k+1) = T x(k) + c for k = 0; 1; 2; ··· Thm: The following statements are equivalent I ρ(T ) < 1. I The equation x = T x + c (1) has a unique solution and fx(k)g converges to this solution from any x(0). Proof: Assume ρ(T ) < 1. Then (1) has unique solution x(∗). x(k+1) − x(∗) = T x(k) − x(∗) = T 2 x(k−1) − x(∗) = ··· = T k+1 x(0) − x(∗) =) 0: Conversely, if ··· (omitted) Jacobi on random upper triangular matrix −1 I A = D − U. T = D U with ρ(T ) = 0: A is randn upper triangular with n = 50 0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 nz = 1275 I Convergence plot G-S Convergence on upper triangular matrix 10 14 10 12 10 10 10 8 10 6 10 4 10 2 10 0 10 -2 10 -4 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Taking difference of two equations, (D − ! L) x = ((1 − !) D + ! U) x + ! b: Successive Over-Relaxation (SOR), for k = 0; 1; 2; ··· (k+1) −1 (k) −1 xSOR = (D − ! L) ((1 − !) D + ! U) xSOR + ! (D − ! L) b def (k) = TSOR xSOR + cSOR: converges if ρ (TSOR) < 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    75 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us