1 Bhabha Scattering (1936)

1 Bhabha Scattering (1936)

1 Bhabha scattering (1936) Consider the scattering of an electron and a positron. We have already computed the annihilation of an electron/positron in finding the cross-section for producing muon pairs. It is also possible for the final particles to be an electron-positron pair. In addition, the initial particles may exchage a photon without annihilating. Since the particles are distinguish- able, we have only the t-channel diagram for this, without the crossed diagram. Let the in and out electrons have momenta p; p0, respectively and the initial and final positrons have momenta k;k0. Let the angle between the initial and final electrons be q. The general calculation is lengthy; here we restrict our attention to the ultrarelativistic case, where we can treat the m2 electron and positron as massless. This means we neglect terms of order E2 . For GeV or TeV colliders, this term is of order 10−8 or 10−14, so we incur no great error. We may drop m whenever it occurs additively. 1.1 The scattering matrix We have two Feynman diagrams, so the matrix element is the sum s t iM fi = iM fi + iM fi where s and t refer to the photon channel. The first, s-channel, diagram describes the annihilation-creation. The matrix element is the same as we use for the muon problem, except the particle masses are all equal, and here we want to call p;k the incoming momenta and p0;k0 the outgoing momenta. Therefore, instead of s 0 a −i qa qb b 0 iM = v¯ p (−ieg )u(p) h − (1 − x) u¯(k) −ieg v k fi q2 ab q2 we write s a −i qa qb 0 b 0 iM = v¯(k)(−ieg )u(p) h − (1 − x) u¯ p −ieg v k fi q2 ab q2 that is, we just need to interchange p0 $ k in our previous result, and we have q = p + k = p0 + k0. As before, the gauge terms vanish immediately. We replace q2 = s, leaving 2 s ie a 0 b 0 iM = h v¯(k)g u(p)u¯ p g v k fi s ab The second Feynman diagram has the matrix element t 0 a −i qa qb b 0 iM = u¯ p (−ieg )u(p) h − (1 − x) v¯(k) −ieg v k fi q2 ab q2 where p; p0 are the incoming and outgoing electron, respectively; k;k0 are the incoming and outgoing proton (or any other fermion of charge Q, except the electron which would also require the u channel), respectively; q = p− p0 = k0 −k is the t-channel 4-momentum; x allows a choice of gauge. The gauge term does not immediately drop in this case. We have: −i qa q i u¯p0(−iega )u(p) −(1 − x) b v¯(k) −iegb vk0 = (1 − x)e2u¯p0(iq=)u(p)v¯(k)(iq=)vk0 q2 q2 t2 i = (1 − x)e2u¯p0ip= − ip=0u(p)v¯(k)ik=0 − ik=vk0 t2 i = (1 − x)e2u¯p02mu(p)v¯(k)2mvk0 t2 4im2e2 = (1 − x)e2u¯p0u(p)v¯(k)vk0 t2 where we use the Dirac and conjugate Dirac equations in the middle step. The matrix element becomes 2 2 2 t ie 0 a 0 b 4im e 2 0 0 iM = h u¯ p g u(p)u¯ k g u(k) − (1 − x)e u¯ p u(p)v¯(k)v k fi t ab t2 1 where we set q2 = t. We should get the same result in any gauge, so we could just set x = 1, but in any case the term of of order m2 and we drop it. The resulting matrix element is s t iM fi = iM fi + iM fi ie2 ie2 = h v¯(k)ga u(p)u¯p0gb vk0 + h u¯p0g m u(p)v¯(k)gn vk0 s ab t mn Squaring the matrix element leads to four terms, 2 s 2 s t∗ t s∗ t 2 iM fi = iM fi + M fiM fi + M fiM fi + iM fi We work them out one at a time. 1.2 Matrix squared: s channel 2 s We already have iM fi from the muon case. Averaging over initial spins and summing over final spins, we found 4 1 s 2 8e 0 0 0 0 0 0 2 0 0 2 0 0 2 4 ∑ M fi = 2 p · p k · k − k · p (k · p) + p · k p · k − m (k · p) + (k · p) k · p + m k · p + 2m (k · p) + 2m 4 all spins s 8e4 = p · p0k · k0 + p0 · kp · k0 + m2 k0 · p0 + m2 (k · p) + 2m4 s2 where some simplification occurs because of the equal masses. 1.3 Matrix squared: t channel For the final term, we have 2 2 1 t 2 1 ie 0 m n 0 ie 0 r s 0 ∑ M fi = ∑ hmn u¯ p g u(p)v¯(k)g v k − hrs v¯ k g v(k)u¯(p)g u p 4 all spins 4 all spins t t 4 e 0 m n 0 0 r s 0 = ∑ 2 hmn hrs u¯ p g u(p)v¯(k)g v k v¯ k g v(k)u¯(p)g u p all spins 4t 4 e 0 m n 0 0 r s 0 = ∑ 2 hmn hrs u¯a p gabub (p)v¯c (k)gcdvd k v¯e k ge f v f (k)u¯g (p)gghuh p all spins 4t 4 14 e m s 0 0 n 0 0 r = (−1) ∑ 2 hmn hrs gabub (p)u¯g (p)gghuh p u¯a p gcdvd k v¯e k ge f v f (k)v¯c (k) all spins 4t e4 = h h g m (p= + m) gs p=0 + m gn k=0 − m gr (k= − m) 4t2 mn rs ab bg gh ha cd de e f f c e4 = h h tr g m (p= + m)gs p=0 + mtr gn k=0 − mgr (k= − m) 4t2 mn rs where the factor (−1)14 keeps track of the number of times we commute fermion fields. The traces give tr g m (p= + m)gs p=0 + m = tr g m p=gs p=0 + mg m gs p=0 + mg m p=gs + m2g m gs = tr g m p=gs p=0 + m2tr (g m gs ) 0 m l s t 2 ms = pl pttr g g g g + 4m h 0 ml st ms lt mt ls 2 ms = 4pl pt h h − h h + h h + 4m h 0 ml st ms lt mt ls 2 ms = 4pl pt h h − h h + h h + 4m h = 4pm p0s − p · p0h ms + p0m ps + m2h ms tr gn k=0 − mgr (k= − m) = 4k0n kr − k · k0hnr + kn k0r + m2hnr 2 Combining these results, 4 1 t 2 4e m 0s 0 ms 0m s 2 ms 0n r 0 nr n 0r 2 nr ∑ M fi = 2 hmn hrs p p − p · p h + p p + m h k k − k · k h + k k + m h 4 all spins t 4e4 = p p0 k0n kr − k · k0hnr + kn k0r + m2hnr t2 n r 4e4 − p · p0h k0n kr − k · k0hnr + kn k0r + m2hnr t2 nr 4e4 + p0 p k0n kr − k · k0hnr + kn k0r + m2hnr t2 n r 4m2e4 + h k0n kr − k · k0hnr + kn k0r + m2hnr t2 nr Performing the remaining contractions, 4 1 t 2 4e 0 0 0 0 0 0 2 0 ∑ M fi = 2 p · k p · k − k · k p · p + (p · k) p · k + m p · p 4 all spins t 4e4 − p · p0k · k0 − 4k · k0 + k · k0 + 4m2 t2 4e4 + p0 · k0(p · k) − k · k0p · p0 + p0 · kp · k0 + m2 p · p0 t2 4m2e4 + k · k0 − 4k · k0 + k · k0 + 4m2 t2 8e4 = p · k0p0 · k − k · k0p · p0 + (p · k)p0 · k0 + m2 p · p0 + m2 − p · p0−k · k0 + 2m2 t2 8e4 = p · k0p0 · k + (p · k)p0 · k0 − m2 p · p0 − m2 k · k0 + 2m4 t2 1.4 Matrix squared: first cross term Now consider the first of the cross terms. We need to make sure we’ve assigned the same momenta to the four particles. But for the s channel we’ve set p0 as the initial positron momentum instead of the final. 2 2 1 s t∗ 1 ie a 0 b 0 ie 0 n m 0 ∑ M fiM fi = ∑ hab v¯(k)g u(p)u¯ p g v k − hmn v¯ k g v(k)u¯(p)g u p 4 all spins 4 all spins s t 4 e a 0 b 0 0 n m 0 = hab hmn ∑ v¯a (k)gabub (p)u¯c p gcdvd k v¯e k ge f v f (k)u¯g (p)gghuh p 4st all spins 4 15 e a b 0 0 n m 0 0 = (−1) hab hmn ∑ gabub (p)u¯g (p)gcdvd k v¯e k ge f v f (k)v¯a (k)gghuh p u¯c p 4st all spins e4 = − h h k= ga p= g m p=0 gb k=0 gn 4st ab mn f a ab bg gh hc cd de e f e4 = − h h tr k=ga p=g m p=0gb k=0gn 4st ab mn where we have dropped all mass terms. Notice that the fermion exchanges have introduced an overall sign.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us