(<I>Opsanus Beta</I>) Sonic Muscle Enzyme Activities

(<I>Opsanus Beta</I>) Sonic Muscle Enzyme Activities

<p>BULLETIN OF&nbsp;MARINE SCIENCE, 45(1):&nbsp;68-75,1989 </p><p>SCALING AND SEX-RELATED&nbsp;DIFFERENCES IN&nbsp;TOADFISH <br><em>(OPSANUS BETA) </em>SONIC MUSCLE ENZYME ACTIVITIES </p><p><em>Patrick J. Walsh, Cindy Bedolla and Thomas P. &nbsp; Mommsen </em></p><p>ABSTRACT </p><p></p><ul style="display: flex;"><li style="flex:1">Male toadfishes&nbsp;(genus <em>Opsanus) </em>use a sonic muscle&nbsp;on the swim&nbsp;bladder to&nbsp;produce </li><li style="flex:1">a</li></ul><p></p><ul style="display: flex;"><li style="flex:1">mating call-the&nbsp;boatwhistle-for </li><li style="flex:1">extended periods during the&nbsp;mating season. Previously,&nbsp;we </li></ul><p>noted significant differences in&nbsp;sonic muscle mass and activities&nbsp;of metabolic&nbsp;enzymes of&nbsp;the sonic muscles between male and female gulf&nbsp;toadfish, <em>Opsanus beta, &nbsp;</em>of a limited&nbsp;size range (12-130 grams). Notably,&nbsp;males had larger sonic muscles and elevated&nbsp;aerobic capacity, as indicated by&nbsp;higher mass-specific activities of&nbsp;citrate synthase (CS)&nbsp;and malate dehydrogenase (MDH). The present study examined&nbsp;the patterns&nbsp;of sonic muscle&nbsp;mass and activities&nbsp;of these enzymes (and lactate dehydrogenase)&nbsp;in sonic muscle and skeletal muscle as a function&nbsp;of a larger range of body size (7-400&nbsp;grams) in&nbsp;an effort to determine&nbsp;the point of&nbsp;growth and development that&nbsp;these mate-female&nbsp;differences occur, and to shed light on the possible functional significances of&nbsp;these differences. Sonic muscle mass differences were apparent&nbsp;in the smallest&nbsp;toadfish, and identical rates of&nbsp;increase in&nbsp;sonic muscle mass in&nbsp;males and females maintained these&nbsp;differences throughout&nbsp;the size range examined.&nbsp;In contrast,&nbsp;mass-specific CS and&nbsp;MDH activities were&nbsp;similar in&nbsp;smaller toadfish and began to&nbsp;diverge when fish&nbsp;were about 2S&nbsp;g, While&nbsp;mass-specific MDH activity increased at&nbsp;different rates in males and females, mass-specific CS&nbsp;activity increased in&nbsp;males and decreased&nbsp;in females.&nbsp;The results are discussed in&nbsp;the context&nbsp;of possible&nbsp;control by&nbsp;steroid sex&nbsp;hormones, size&nbsp;at sexual maturity, and success in mate attraction. </p><p>The toadfish&nbsp;(genus <em>Opsa nus, &nbsp;</em>family Batrachoididae)&nbsp;swimbladder has&nbsp;a sonic muscle which contracts&nbsp;to produce&nbsp;sound. The sonic muscle is&nbsp;used by both sexes to generate&nbsp;grunts when disturbed,&nbsp;but additionally,&nbsp;males are known to sound a </p><ul style="display: flex;"><li style="flex:1">mating call-the&nbsp;"boatwhistle" -intermittantly </li><li style="flex:1">for many&nbsp;hours during the mating </li></ul><p>season (Gray and Winn,&nbsp;1961; Fine et al., 1977). The sonic muscle is&nbsp;characterized by one of the fastest contraction&nbsp;cycles in the animal&nbsp;kingdom (Skoglund, 1959), due in part to several specializations&nbsp;in innervation&nbsp;(Gainer and Klancher,&nbsp;1965), ultrastructure (Franzini-Armstrong&nbsp;and Nunzi,&nbsp;1983), and biochemistry&nbsp;of the contractile apparatus (i.e.,&nbsp;parvalbumin isozyme&nbsp;proportions and&nbsp;total quantity differ from white skeletal muscle, Hamoir&nbsp;et a1., 1980). In characterizing&nbsp;the metabolic poise&nbsp;of this&nbsp;unique muscle, we&nbsp;discovered that&nbsp;biochemical specializations are&nbsp;apparent at&nbsp;the level of energy metabolism&nbsp;as well (Walsh&nbsp;et al.,&nbsp;1987). The capacity&nbsp;for anaerobic&nbsp;glycolysis in sonic muscle is&nbsp;similar to&nbsp;white skeletal muscle in&nbsp;<em>Opsanus beta, &nbsp;</em>as judged&nbsp;by high activities&nbsp;of lactate&nbsp;dehydrogenase (LOH) and other enzymes (Walsh et&nbsp;al., 1987). However,&nbsp;sonic muscle possesses a higher potential&nbsp;for aerobic&nbsp;metabolism than&nbsp;toadfish white skeletal muscle as indicated by&nbsp;activities of&nbsp;citrate synthase (CS)&nbsp;and malate dehydrogenase&nbsp;(MOH) (Walsh et&nbsp;al., 1987). <br>Some details of&nbsp;the mechanisms&nbsp;of the sex-related&nbsp;differences in&nbsp;use ofthe&nbsp;sonic muscle in&nbsp;toadfish species are known. Males have larger sonic muscles than females (Fine, 1975;&nbsp;Walsh et al., 1987). There is a polymorphism&nbsp;in the degree of development of&nbsp;the sonic motor&nbsp;nucleus (SMN) in the posterior&nbsp;medulla and anterior spinal cord; some males have much larger SMN's than other males and females (Fine et al., 1984). At the biochemical&nbsp;level, significant differences in&nbsp;enzyme activities per&nbsp;gram sonic muscle exist for CS, LOH,&nbsp;and MDH between male and females ofa limited body mass range (12-130&nbsp;grams, Walsh et&nbsp;al., 1987). However, </p><p>68 </p><p>WALSH ET&nbsp;AL.: TOADFISH&nbsp;PHYSIOLOGY </p><p>69 </p><p>in spite of these differences, both&nbsp;males and females can be made to produce the boatwhistle by&nbsp;electrically stimulating&nbsp;the SMN in the laboratory&nbsp;(Demski and Gerald, 1974;&nbsp;Fine, 1979).&nbsp;The current working hypothesis (see&nbsp;Pennypacker et aI., 1985) is that the production&nbsp;of the boatwhistle&nbsp;is produced&nbsp;by differential environmental/hormonal stimulation&nbsp;of similar&nbsp;(but not identical) nerve-muscle complexes in males and females. This hypothesis is supported by several lines of evidence: females do not produce the boatwhistle&nbsp;in nature&nbsp;(Gray and Winn, 1961; Fine et aI., 1977), and&nbsp;males produce it only during the summer&nbsp;months with some apparent&nbsp;dependence on&nbsp;water temperature&nbsp;(Fine et aI., 1977; Fine, 1978); testosterone&nbsp;is taken&nbsp;up by specific areas of the toadfish brain believed to be linked to sound production&nbsp;(Fine et aI., 1982). Finally, testosterone&nbsp;and dihydrotestosterone administration to&nbsp;ovariectomized females&nbsp;appears to increase the levels of some sonic muscle enzyme activities&nbsp;(Pennypacker et&nbsp;aI., 1985);&nbsp;however, Walsh et al. (1987) have raised methodological&nbsp;concerns about this study. <br>With this background&nbsp;in mind, we&nbsp;decided to examine the manner in which the activities ofLDH,&nbsp;CS, and&nbsp;MDH scale&nbsp;versus body mass in order to determine if the&nbsp;sex-related differences (Walsh et aI., 1987) are apparent&nbsp;at all sizes/ages, or if some critical point in development/maturation&nbsp;exists at which these differences appear. This information&nbsp;would supply clues to the mechanisms&nbsp;maintaining these sexual differences, and would help in evaluating&nbsp;the hypothesis (Walsh et aI., 1987) that&nbsp;elevated CS&nbsp;and MDH activities lead to an enhanced capacity for sustained, aerobic sound production.&nbsp;Furthermore, the&nbsp;scaling of enzyme activities in a non-locomotory&nbsp;muscle may add interesting counterpoint&nbsp;to the discovery of size-scaling in enzyme activities&nbsp;in locomotory&nbsp;muscles (for&nbsp;review see Somero and Childress,&nbsp;1985). <br>We report significant differences between male and female toadfish in the manner in which CS and MDH&nbsp;scale with body mass. These differences are partly due to differences in enzyme activity established at an early developmental&nbsp;stage, as well as through&nbsp;differential accumulation&nbsp;of enzyme activity during later growth. </p><p>MATERIALS AND&nbsp;METHODS <br>Specimens of&nbsp;the gulf toadfish,&nbsp;<em>Opsanus beta. &nbsp;</em>were captured&nbsp;by local shrimp&nbsp;trawlers in&nbsp;south Biscayne Bay,&nbsp;Florida between June 1986&nbsp;and July 1987,&nbsp;and were held without&nbsp;feeding in running saltwater aquaria at&nbsp;ambient temperature&nbsp;for no longer than&nbsp;1 week&nbsp;prior to sacrifice. Fish were anesthetized with&nbsp;0.5 g per liter tricaine&nbsp;methanesulfonate, weighed,&nbsp;the sonic muscle was dissected from the swimbladder&nbsp;and weighed, and the sex&nbsp;was recorded.&nbsp;Sex is relatively&nbsp;easy to determine&nbsp;in this species in the size range used by simple visual inspection.&nbsp;Ovaries are&nbsp;distinguished by&nbsp;a large ovarian artery and large&nbsp;(0.5 to 4 mm) yellow to orange oocytes. Testis are filled with a clear to offwhite material and no&nbsp;cells are visible&nbsp;to the naked eye. Additionally,&nbsp;a sample&nbsp;of white&nbsp;skeletal muscle was taken&nbsp;from the lateral area just behind&nbsp;the anus from a smaller subset of fish. In some cases the intact swimbladder&nbsp;or skeletal&nbsp;muscle sample was&nbsp;frozen at -80·C&nbsp;for I&nbsp;to 2 months&nbsp;before further processing. Control measurements&nbsp;of enzyme&nbsp;activities before&nbsp;and after freezing demonstrated&nbsp;no significant effect&nbsp;of freezing.&nbsp;Muscles were&nbsp;homogenized in&nbsp;5 volumes&nbsp;of 50 mM NaHEPES,&nbsp;pH 7.5 (adjusted at&nbsp;room temperature)&nbsp;with glass Duall homogenizers&nbsp;on ice. Following&nbsp;sonication with&nbsp;a Heat Systems Ultrasonics&nbsp;Model WI85&nbsp;for 15&nbsp;sec at 50 watts,&nbsp;homogenates were&nbsp;centrifuged at 1,600 x g&nbsp;for 5 min. The resulting crude supernatants&nbsp;were used directly (CS)&nbsp;or diluted&nbsp;I: 10 with&nbsp;HEPES buffer (LDH,&nbsp;MDH) immediately&nbsp;prior to&nbsp;the assays. </p><ul style="display: flex;"><li style="flex:1">Enzymes were&nbsp;assayed spectrophotometrically </li><li style="flex:1">with an LKB Ultrospec&nbsp;4050 by the methods&nbsp;of </li></ul><p>Walsh et&nbsp;al. (I&nbsp;987). Assay temperature&nbsp;was 22·C, final reaction&nbsp;volume was&nbsp;2.0 ml, and assays were buffered with 50 mM HEPES. Oxidation&nbsp;ofNADH was&nbsp;monitored at&nbsp;340 nm (micromolar&nbsp;extinction coefficient E = 6.22) for LDH and MDH,&nbsp;and change in absorbance&nbsp;of 5,5' dithiobis-(2-nitrobenzoic acid) (DTNB) was monitored&nbsp;at 412 nm (E = 13.6) for CS. Specific assay conditions&nbsp;were as follows (final concentrations):&nbsp;Citrate synthase (E.C.&nbsp;4.1.3.7)-0.1 mM&nbsp;DTNB, 0.3&nbsp;mM Acetyl CoA, 20 Itl supernatant, 0.5&nbsp;mM oxaloacetate,&nbsp;pH 8.0. Lactate dehydrogenase&nbsp;(E.C. 1.1.1.27) (LDH)-O.15&nbsp;mM NADH, 20&nbsp;Itll: 10&nbsp;diluted supernatant,&nbsp;0.5 mM pyrvate,&nbsp;pH 7.5. Malate dehydrogenase&nbsp;(E.C. 1.1.1.37) </p><p>BULLETIN OF MARINE SCIENCE, VOL. 45, NO.1,&nbsp;1989 </p><p>70 </p><p>R</p><p>"</p><p>VI </p><p>"</p><p>D</p><p>E</p><p>'" </p><p>a: </p><p>e</p><p>4</p><p>'" </p><p>"<br>•</p><p>1: </p><p>•</p><p>~</p><p>'" </p><p>... <sub style="top: 0.04em;">0 </sub></p><p>...• </p><p>•</p><p>•</p><p>•</p><p>u</p><p>a: </p><p>3</p><p></p><ul style="display: flex;"><li style="flex:1">"</li><li style="flex:1">D</li></ul><p></p><p>'" </p><p>••</p><p>•</p><p>1: </p><p>'" </p><p>•</p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">EI </li><li style="flex:1">13 EC </li><li style="flex:1">C</li></ul><p></p><p>"</p><p>... </p><p>...• </p><p>U</p><p>1: </p><p>~</p><p>~ 'I.•••&nbsp;"• </p><p>Z</p><p>·1 </p><p>m</p><p></p><ul style="display: flex;"><li style="flex:1">I ! I . </li><li style="flex:1">•</li><li style="flex:1">• • </li></ul><p></p><p>'" =</p><p><sup style="top: -0.72em;">0</sup>'" </p><p>1: </p><p>~</p><p>•</p><p>0</p><p>'" </p><p>...• </p><p>z</p><p>o</p><p>'" </p><p>oo</p><p></p><ul style="display: flex;"><li style="flex:1">100 </li><li style="flex:1">200 </li><li style="flex:1">300 </li><li style="flex:1">400 </li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">BODY MRSS&nbsp;(g rllm s) </li><li style="flex:1">lOG BODY&nbsp;MRSS </li></ul><p></p><p>Figure I.&nbsp;A. Sonic muscle mass vs. body mass for males (open squares) and females (closed diamonds) of the&nbsp;gulf toad fish, <em>Opsanus beta. </em>Equations for&nbsp;linear regressions are y&nbsp;= 0.137 + O.Ollx, <em>r </em>= 0.95 </p><p>(males) and y&nbsp;= 0.116 + 0.008x, <em>r </em>= 0.90 (females). B.&nbsp;Log sonic muscle mass vs. log&nbsp;body mass for male (y&nbsp;= -1. 732 + 0.912x, <em>r </em>= 0.99) and female (y&nbsp;= -1.882 + 0.9l3x, <em>r </em>= 0.97) toadfish.&nbsp;Symbols </p><p>as in Figure&nbsp;IA. </p><p>(MDH}-O.15 mM NADH,&nbsp;20111 1:10 diluted&nbsp;supernatant, 0.5&nbsp;mM oxaloacetate,&nbsp;pH 7.5. The last item for&nbsp;each assay was omitted&nbsp;as a control.&nbsp;In all cases this control&nbsp;activity, which&nbsp;was less than 5%, was subtracted&nbsp;from the activity&nbsp;with substrate.&nbsp;Reactions were&nbsp;initiated with&nbsp;50 to&nbsp;100 <em>III </em>of the substrate. Biochemicals were&nbsp;purchased from&nbsp;Sigma Chemical&nbsp;Co. (St. Louis, MO) and all other chemicals were&nbsp;reagent grade. One unit is&nbsp;defined as I&nbsp;<em>I1mol </em>product min-I. Results were curve fitted with Cricket Graph ® (Cricket Software, Inc., Philadelphia,&nbsp;PA), and slopes and y-intercepts&nbsp;of linear&nbsp;regressions were&nbsp;compared by&nbsp;two-tailed Student's t-test&nbsp;(Zar, 1974),&nbsp;and <em>P </em>:5 0.05 is considered&nbsp;to indicate&nbsp;significant differences between groups. </p><p>RESULTS </p><p><em>Sonic Muscle Mass. &nbsp;</em>-Sonic muscle&nbsp;mass increases regularly with body mass in <em>Opsanus beta, &nbsp;</em>but the mass of&nbsp;the sonic muscle is&nbsp;higher in males than in females (Fig. lA). Although&nbsp;the mean body weights (±SE,&nbsp;N) for the two groups are not significantly different (males = 143.2 grams&nbsp;± 14.2,&nbsp;N = 50; females&nbsp;= 164.6 ± 17.2, N = 47; <em>t </em>= 0.96), the Sonic Muscle Somatic Index (SMSI = percentage&nbsp;of body weight that is&nbsp;sonic muscle) is&nbsp;significantly different in&nbsp;the two groups (male SMSI = 1.230 ± 0.035; female SMSI = 0.891&nbsp;± 0.030; <em>t </em>= 7.39, <em>P </em>::5 0.001). The increase&nbsp;in sonic muscle mass is&nbsp;best described&nbsp;by a double&nbsp;logarithmic relationship in&nbsp;both sexes&nbsp;(Fig. 1B).&nbsp;The slopes of&nbsp;the linear regressions&nbsp;of log sonic muscle mass vs. log&nbsp;body mass are not significantly different <em>(t </em>= 0.25), but the y-intercepts&nbsp;are <em>(t </em>= 13.22, <em>P </em>::5 0.00 I). These data indicate&nbsp;that the relative difference in&nbsp;sonic muscle mass between male and female toad&nbsp;fish is determined at a point&nbsp;in development&nbsp;earlier than the smallest (=youngest?)&nbsp;fish we sampled (7.3 grams),&nbsp;and that thereafter&nbsp;sonic muscle mass increases similarly in&nbsp;both sexes. </p><p><em>Sonic Muscle </em>CS <em>Activity. </em>-Mass-specific aerobic&nbsp;capacity, as&nbsp;indicated by&nbsp;citrate synthase activity per&nbsp;gram of&nbsp;sonic muscle, also scales differently&nbsp;for males and females (Fig. 2A). CS activity&nbsp;per gram of sonic muscle increases&nbsp;in males,&nbsp;whereas it decreases&nbsp;in females&nbsp;(Fig. 2A; slopes significantly&nbsp;different, <em>t </em>= 4.21, <em>P::5 0.001). </em>However, CS&nbsp;activities per&nbsp;gram in smaller&nbsp;fish are similar&nbsp;(y-intercepts are&nbsp;not significantly different, <em>t </em>= 1.30)&nbsp;indicating that&nbsp;the differentiation&nbsp;of CS activities occurs during later stages in&nbsp;development and&nbsp;maturation. When&nbsp;the total CS activity per&nbsp;sonic muscle is&nbsp;calculated highly&nbsp;significant logarithmic&nbsp;relationships </p><p>WALSH ET&nbsp;AL.: TOADFISH&nbsp;PHYSIOLOGY </p><p>71 </p><p>A<br>B</p><p>". </p><p>!:: </p><p>"</p><p>D</p><p>: . </p><p>". </p><p>!:: <br>;:: </p><p>: . </p><p>u</p><p>";" </p><p>E</p><p>;:: </p><p>4321</p><p>o</p><p>0: </p><p>1</p><p><sup style="top: -0.34em;">U</sup>0: </p><p>I I </p><p>... </p><p>D</p><p>0: </p><p>.. </p><p>'" </p><p>"<br>"</p><p>D</p><p>"</p><p></p><ul style="display: flex;"><li style="flex:1">'</li><li style="flex:1">"</li></ul><p></p><p>•... </p><p>=</p><p>'" </p><p>D</p><p>Z</p><p>.. </p><p><sub style="top: 0.06em;">0</sub>-'<sub style="top: 0.06em;">: </sub></p><p>•... </p><p>Q</p><p>•</p><p>". </p><p>-</p><p>•</p><p>D</p><p>'c </p><p>••</p><p>0</p><p>'" </p><p>•... </p><p>... </p><p>•... </p><p>D</p><p>.=- </p><p>.</p><p>D</p><p>0: </p><p>D</p><p>Q</p><p>•</p><p>D</p><p>0: </p><p>'" </p><p>•... </p><p>D</p><p>'b </p><p>•• </p><p>•</p><p>-' </p><p>~"..,.~ </p><p>•</p><p>•</p><p>U<br>D</p><p>•</p><p>•<br>•</p><ul style="display: flex;"><li style="flex:1">•</li><li style="flex:1">•</li></ul><p></p><p>400 </p><p>•</p><p>~o</p><p></p><ul style="display: flex;"><li style="flex:1">100 </li><li style="flex:1">200 </li><li style="flex:1">300 </li><li style="flex:1">0</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>BODY MASS&nbsp;(grams) lOG BODY MASS </p><p>Figure 2.&nbsp;A. Mass-specific&nbsp;citrate synthase activity (units gram sonic muscle mass-I) vs.&nbsp;body mass (grams) for male (y = 1.159 + 0.006x, <em>r </em>= 0.51) and female (y&nbsp;= 1.477 -&nbsp;O.OOlx, <em>r </em>= 0.26) toadfish. B. Log total&nbsp;sonic muscle citrate synthase activity vs.&nbsp;log body&nbsp;mass for male (y = -2.074 + 1.206x, <em>r </em>= 0.91) and female (y&nbsp;= -1.358 + 0.678x, <em>r </em>= 0.78) toadfish.&nbsp;Total sonic muscle enzyme activity is calculated&nbsp;by multiplying&nbsp;mass-specific activity (Fig.&nbsp;2A) by sonic muscle mass (Fig. IA) for each individual. Symbols&nbsp;as in Figure&nbsp;IA. </p><p>with body weight are evident.&nbsp;The regression&nbsp;lines for male and female toadfish cross at a body size of about&nbsp;25 grams&nbsp;(Fig. 2B). </p><p><em>Sonic Muscle MDH Activity. &nbsp; - </em>The mass-specific&nbsp;activity of&nbsp;MDH also&nbsp;increases as a function&nbsp;of body&nbsp;weight, and the differing rates of&nbsp;increase in&nbsp;males and females are best described&nbsp;by logarithmic&nbsp;and linear functions,&nbsp;respectively (Fig. 3A). We again compared&nbsp;total activity in&nbsp;the sonic muscle with body mass for MDH and found that these data were best fit&nbsp;by a log-log relationship&nbsp;(Fig. 3B). The slopes of these lines are not significantly&nbsp;different <em>(t </em>= 1.465, <em>P ::: :</em>0<em>;</em>.10), but the y-intercepts&nbsp;are <em>(t </em>= 2.418, <em>P </em>:S 0.02). Apparently,&nbsp;MDH activity is&nbsp;set at a higher titre in males at an earlier stage of&nbsp;development, but&nbsp;males continue&nbsp;to accrete M D H&nbsp;activity at&nbsp;a slightly&nbsp;higher rate than females. </p><p><em>Sonic Muscle LDH Activity. &nbsp; - </em>In contrast&nbsp;to CS and MDH,&nbsp;the mass-specific </p><p>activity ofLDH&nbsp;decreases as&nbsp;a function&nbsp;of body&nbsp;mass <em>(t </em>= 3.01, <em>P ::::; </em>0.005, males; <em>t </em>= 2.58, <em>P ::::; </em>0.01, females) but the rates of&nbsp;decrease are&nbsp;not significantly different for the two sexes <em>(t </em>= 1.08) (Fig. 4A). We previously&nbsp;reported significantly&nbsp;higher mass-specific LDH activity in&nbsp;females vs.&nbsp;males of&nbsp;a limited&nbsp;size-range (female LDH = 481.9 ± 126.4 units g-I(7); female body mass = 72.5 ± 27.4 g; male LDH = 333.4 ± 89.0 (6); male body mass = 96.8 ± 21.3; x ± SD (N), Walsh et al., 1987). However,&nbsp;the increased&nbsp;variability in&nbsp;the present data set&nbsp;obscures these differences (y-intercepts&nbsp;not significantly different, Fig.&nbsp;4A). When&nbsp;the total anaerobic capacities (as&nbsp;indicated by&nbsp;total LDH activity) of&nbsp;the sonic muscles are compared as&nbsp;a function&nbsp;of body&nbsp;mass, highly significant linear log-log relationships are obtained&nbsp;(Fig. 4B), but neither&nbsp;the slopes nor the y-intercepts&nbsp;of the&nbsp;relationship for males and females are significantly different. Thus, the lower LDH activity per gram&nbsp;in males (Walsh et al., 1987; Fig. 4A) is offset by a larger sonic muscle mass resulting in&nbsp;nearly identical total anaerobic&nbsp;capacities in&nbsp;the sonic muscles of the two sexes (Fig. 4B). </p><p><em>Skeletal Muscle Enzyme &nbsp; Activities. </em>-In the&nbsp;limited group of&nbsp;toadfish tested, no </p><p>apparent differences&nbsp;existed between the sexes&nbsp;in skeletal muscle MDH,&nbsp;LDH, or CS activities&nbsp;(Table I).&nbsp;Correlations with&nbsp;body mass were weak for MDH&nbsp;and </p><p>BULLETIN OF&nbsp;MARINE SCIENCE, VOL. 45, NO. I, 1989 </p><p>72 </p><p>600 500 </p><p>D</p><p>R</p><p>"" </p><p>!:: </p><p>::0 </p><p>D</p><p>i= </p><p>u</p><p>"" </p><p>!:: </p><p>a: </p><p>::0 3 </p><p>D</p><p>•</p><p>D</p><p>"</p><p>i= </p><p><strong>'"'- </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>.." </strong></li><li style="flex:1"><strong>I</strong></li></ul><p></p><p><strong>400 300 </strong></p><p>u</p><p>a: </p><p></p><ul style="display: flex;"><li style="flex:1">~</li><li style="flex:1">E</li></ul><p></p><p>.. </p><p><strong>~</strong></p><p></p><ul style="display: flex;"><li style="flex:1">'"' </li><li style="flex:1">=</li></ul><p></p><p><strong>:; </strong></p><p>i: 2 </p><p>..... </p><p>~ .: </p><p>a: </p><p>•... </p><p>"" .- </p><p></p><ul style="display: flex;"><li style="flex:1">ffi </li><li style="flex:1">;</li></ul><p></p><p><strong>200 </strong></p><p><sup style="top: -0.7em;">e</sup>:;1 </p><p>e - </p><p>•... </p><p>'"' </p><p>a: </p><p>e</p><p>100 </p><p>..... <br>..... </p><p>a: </p><p>1: </p><p></p><ul style="display: flex;"><li style="flex:1">o</li><li style="flex:1">o</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">100 </li><li style="flex:1">200 </li><li style="flex:1">300 </li><li style="flex:1">400 </li><li style="flex:1">0</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>°</p><p></p><ul style="display: flex;"><li style="flex:1">BOOY MflSS&nbsp;(g ro ffis) </li><li style="flex:1">LOG BODY MRSS </li></ul><p></p><p>Figure 3,&nbsp;A, Mass-specific&nbsp;malate dehydrogenase&nbsp;activity vs,&nbsp;body mass for male (y&nbsp;= 43,8 I2XO.369 </p><p>,</p><p><em>r </em>= 0.54) and female (y&nbsp;= 116.418 + 0,339x, <em>r </em>= 0.50) toadfish.&nbsp;B. Log total&nbsp;sonic muscle malate dehydrogenase activity&nbsp;vs. log body&nbsp;mass for male (y = -0.111 + 1.293x, <em>r </em>= 0.91) and female (y&nbsp;= -0.054 + 1.092x, <em>r </em>= 0.90) toadfish.&nbsp;Symbols and calculations&nbsp;as in Figures&nbsp;1 and&nbsp;2. </p><p>LDH; however, a&nbsp;significant negative slope&nbsp;was noted&nbsp;for skeletal&nbsp;CS activity/ gram versus body mass with no difference between&nbsp;males and females (Table 1). </p><p>DISCUSSION </p><p>The results of&nbsp;this study are consistent&nbsp;with the hypothesis&nbsp;advanced by&nbsp;Walsh et al. (1987),&nbsp;that the ability to sustain the mating call in male toadfish&nbsp;<em>(Opsanus beta) </em>may be linked to aerobic&nbsp;metabolic capacity in&nbsp;the sonic muscle. Male toadfish possess significantly larger sonic muscles than females (Fig. lA). This difference already is&nbsp;apparent early&nbsp;in development,&nbsp;and sonic muscle mass is added equally and incrementally&nbsp;with body mass in both sexes; the exponents&nbsp;(b) in the allometric&nbsp;growth equation,&nbsp;Sonic Muscle Mass = a(body mass)b&nbsp;are equivalent for males and females and close to 1.0&nbsp;(Fig. IB). Aerobic&nbsp;metabolic capacity, as indicated&nbsp;by CS activity,&nbsp;is similar&nbsp;in sonic muscles of smaller toadfish&nbsp;(~50 g), but&nbsp;increases in&nbsp;the two sexes at different&nbsp;rates (Fig. 2A, B) CS activity&nbsp;per gram increases in&nbsp;males and decreases in&nbsp;females (Fig. 2A), and, taking into consideration the&nbsp;increased sonic&nbsp;muscle mass with body mass in both sexes, total tissue CS&nbsp;increases more rapidly in&nbsp;males than in females (Fig. 2B).&nbsp;The exponent in the allometric&nbsp;equation total&nbsp;CS activity&nbsp;= a(body mass)b&nbsp;is greater&nbsp;than 1.0 in males and less than&nbsp;1.0 in females,&nbsp;and the plots of log total&nbsp;CS activity&nbsp;vs. log body&nbsp;weight for the two sexes cross at a body weight of about&nbsp;25 grams&nbsp;(Fig. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us