Hydrothermal Circulation During Slip on the Mohave Wash Fault, Chemehuevi Mountains, SE CA: Oxygen Isotope Constraints A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Cody J. MacDonald August 2014 © 2014 Cody J. MacDonald. All Rights Reserved. 2 This thesis titled Hydrothermal Circulation During Slip on the Mohave Wash Fault, Chemehuevi Mountains, SE CA: Oxygen Isotope Constraints by CODY J. MACDONALD has been approved for the Department of Geological Sciences and the College of Arts and Sciences by Craig B. Grimes Assistant Professor of Geological Sciences Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT MACDONALD, CODY J., M.S., August 2014, Geological Sciences Hydrothermal Circulation During Slip on the Mohave Wash Fault, Chemehuevi Mountains, SE CA: Oxygen Isotope Constraints Director of Thesis: Craig B. Grimes Fluids are likely significant during the life-cycle of low-angle normal faults (LANFs) as well as other fault systems, but the role of those fluids and their source at fault initiation are unclear. The Mohave Wash Fault (MWF), a LANF situated within the Chemehuevi Mountains core complex (SE CA), offers a well-exposed site to evaluate this question. The MWF slipped 1-2 km during the Miocene before being denuded passively to the surface by extension localized on the higher-level Chemehuevi Detachment Fault. To evaluate fluid-rock interactions during the early slip on this fault 18 system, δ O values of whole rocks, quartz, and epidote were measured by CO2-laser fluorination and interpreted along with field and microscopic observations of fault rocks from this area. The MWF damage zone is variable in thickness and characterized by cracked granitic rocks hosting mineralized fractures, cohesive cataclasites, thin foliated shear zones, and rare pseudotachylite. δ18O of quartz hosted by undeformed granite ranges from 9.0-10.3‰, defining predeformation values. Foliated shear zones and quartz veins 18 18 extend to lower δ OQtz from 10.1-6.1‰, while cataclasites record the lowest δ OQtz values down to 1.1‰. The δ18O values of epidote (from all types) ranges from 5.3‰ to - 0.4‰; the lowest values are generally in cataclasites. The shifts to lower δ18O are 18 explained by interaction with heated, low δ O fluids from an external source (evolved 4 meteoric fluids or basin brines). Apparent temperatures from stable isotope thermometry on coexisting quartz and epidote (from 0.5 cc of rock) from the footwall are typically 50- 150˚C higher than ambient footwall temperatures at 23 Ma (fault initiation) determined using 40Ar/39Ar closure temperatures (John and Foster, 1993). Temperatures defined by both methods increase in the paleodip direction. The temperature difference across the 18 footwall estimated from Δ O(Qtz-Ep) versus Ar/Ar closure temperatures either indicates the mineralization occurred prior to Ar/Ar closure or reflects localized upwelling of hot, 18 deep-seated fluids during slip along the MWF. Calculated δ OH2O in equilibrium with mineral pairs decreases with lower temperature, consistent with influx of progressively lower δ18O fluids with decreasing temperature and depth. 5 DEDICATION To my family, you are my foundation. 6 ACKNOWLEDGMENTS This work would not have been possible without the help and support from Craig Grimes, Barbra John, Justin LaForge, and James Brown. 7 TABLE OF CONTENTS Page Abstract ............................................................................................................................... 3 Dedication ........................................................................................................................... 5 Acknowledgments ............................................................................................................... 6 List of Tables ...................................................................................................................... 9 List of Figures ................................................................................................................... 10 Chapter 1: Introduction ..................................................................................................... 11 Chapter 2: Geologic Background ...................................................................................... 15 Regional Geologic Framework ..................................................................................... 15 Cretaceous Granites – Chemehuevi Plutonic Suite ...................................................... 17 Proterozoic Gneiss ........................................................................................................ 18 Mohave Wash Fault Footwall Geology ........................................................................ 18 Chemehuevi Dike Swarm ............................................................................................. 19 Existing Thermal Structure of the Footwall ................................................................. 20 Constraints on Hydrothermal Fluid Circulation along LANFs .................................... 21 Brief Overview of δ18O Studies on Selected Core Complexes ..................................... 23 Chapter 3: Methods ........................................................................................................... 28 δ18O System ................................................................................................................. 28 Fractionation ................................................................................................................. 29 Water-Rock Interactions and Oxygen Isotope Thermometry ....................................... 30 Formation of Hydrothermal Epidote ............................................................................. 32 Analytical Techniques .................................................................................................. 33 Chapter 4: Results ............................................................................................................. 36 Terminology .................................................................................................................. 36 Field Relations .............................................................................................................. 36 Petrographic Observations from Damage Zones and Hydrothermal Products ............. 38 Monomineralic Quartz Veins .................................................................................... 38 Foliated Shear Bands ................................................................................................ 38 Injection Vein - Pseudotachylite ............................................................................... 39 Shear Band – Green Cataclasites .............................................................................. 39 8 Shear Band – Black Cataclasite ................................................................................ 40 Quartz + Epidote Veins ............................................................................................. 40 Oxygen Isotopes ........................................................................................................... 41 Oxygen Isotope Signature of Cretaceous Granitoids ................................................ 41 Oxygen Isotope Signature of Precambrian Gneiss ................................................... 41 Oxygen Isotope Signature of the Chemehuevi Dike Swarm .................................... 42 Oxygen Isotope Signature of Deformation Structures .............................................. 42 Whole Rock Data ...................................................................................................... 43 Chapter 5: Discussion and Conclusions ............................................................................ 44 Characteristics of the Mohave Wash Fault ................................................................... 44 Constraints on Fluid-Rock Interactions from Oxygen Isotope Ratios .......................... 44 Origin of Epidote: Magmatic Fluids or Externally-Derived Hydrothermal Fluids? .... 46 Isotopic Equilibrium and Oxygen Isotope Thermometry ............................................. 47 Temperature of Fluid-Rock Interactions Along the Mohave Wash Fault .................... 49 Chemehuevi Mountain Isotopic Signature – The Story of Two Fluid Regimes .......... 50 Footwall Isotope Thermometry Variation from Mineral Closure Temperatures ......... 52 Fluids Role in the Development of the Chemehuevi Metamorphic Core Complex ..... 56 Conclusions ................................................................................................................... 58 Tables ................................................................................................................................ 60 Figures ............................................................................................................................... 63 References ......................................................................................................................... 85 9 LIST OF TABLES Page Table 1: Overview of fluid source and isotopic signature ............................................ 60 Table 2: Overview of δ18O studies on metamorphic core complexes ............................ 60 Table 3: Laser fluorination δ18O data for quartz, epidote, garnet and whole rocks from the Chemehuevi Mountains,
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages91 Page
-
File Size-