
<p>ANNALES </p><p>DE </p><p>L’INSTITUT FOURIER </p><p>Hossein MOVASATI </p><p>Mixed Hodge structure of affine hypersurfaces </p><p>Tome 57, n<sup style="top: -0.3013em;">o </sup>3 (2007), p. 775-801. </p><p><<a href="/goto?url=http://aif.cedram.org/item?id=AIF_2007__57_3_775_0" target="_blank">http://aif.cedram.org/item?id=AIF_2007__57_3_775_0</a>> </p><p>© Association des Annales de l’institut Fourier, 2007, tous droits réservés. </p><p>L’accès aux articles de la revue « Annales de l’institut Fourier » (<a href="/goto?url=http://aif.cedram.org/" target="_blank">http://aif.cedram.org/</a>), implique l’accord avec les conditions générales d’utilisation <a href="/goto?url=http://aif.cedram.org/legal/" target="_blank">(</a><a href="/goto?url=http://aif.cedram.org/legal/" target="_blank">http://aif.cedram.org/legal/</a>). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. </p><p><a href="/goto?url=http://www.cedram.org/" target="_blank">cedram </a></p><p>Article mis en ligne dans le cadre du <br>Centre de diffusion des revues académiques de mathématiques </p><p><a href="/goto?url=http://www.cedram.org/" target="_blank">http://www.cedram.org/ </a></p><p>Ann. Inst. Fourier, Grenoble </p><p><strong>57</strong>, 3 (2007) 775-801 </p><p>MIXED HODGE STRUCTURE OF AFFINE <br>HYPERSURFACES </p><p><strong>by Hossein MOVASATI </strong></p><p>Abstract. — In this article we give an algorithm which produces a basis of the n-th de Rham cohomology of the affine smooth hypersurface f<sup style="top: -0.2344em;">−1</sup>(t) compatible with the mixed Hodge structure, where f is a polynomial in n + 1 variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of f is given in terms of the vanishing of integrals of certain polynomial n-forms in C<sup style="top: -0.2344em;">n+1 </sup>over topological n-cycles on the fibers of f. Since the n-th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials. </p><p>Résumé. — Dans cet article nous donnons un algorithme qui produit une base du n-ième groupe de cohomology de De Rham de l’hypersurface affine lisse f<sup style="top: -0.2344em;">−1</sup>(t) compatible avec la structure de Hodge mixte, où f est un polynôme en n + 1 variables et satisfait une condition de régularité à l’infini (en particulier, il a des singularités isolées). Comme application nous montrons que la notion de cycle de Hodge dans une fibre régulière de f est donnée par l’annulation des intégrales de certaines n-formes polynomiales dans C<sup style="top: -0.2344em;">n+1 </sup>sur des n-cycles topologiques dans les fibres de f. Puisque l’homologie de degré n d’une fibre régulière est engendrée par les cycles évanescents, cela conduit à étudier des intégrales abéliennes obtenues en intégrant sur ceux-ci. Notre résultat généralise et utilise les arguments de J. Steenbrink pour les polynômes quasi-homogènes. </p><p><strong>0. Introduction </strong></p><p>To study the monodromy and some numerical invariants of a local holomorphic function f : (C<sup style="top: -0.3013em;">n+1</sup>, 0) → (C, 0) with an isolated critical point at 0, E. Brieskorn in [3] introduced a O<sub style="top: 0.1245em;">C,0 </sub>module H<sup style="top: -0.3013em;">0 </sup>and the notion of GaussManin connection on H<sup style="top: -0.3013em;">0</sup>. Later J. Steenbrink [28], inspired by P. Deligne’s </p><p><em>Keywords: </em>Mixed Hodge structures of affine varieties, Gauss-Manin connection. </p><p><em>Math. classification: </em>14C30, 32S35. </p><p>776 </p><p>Hossein MOVASATI </p><p>theory of mixed Hodge structures (see [5] and two others with the same title) on algebraic varieties defined over complex numbers and W. Schmid’s limit Hodge structure (see [25]) associated to a fibration with projective manifolds, introduced the notion of the mixed Hodge structure for a germ of a singularity f. A different construction of such a mixed Hodge structure was also given by A. Varchenko in [32] using the asymptotic of integrals of holomorphic forms over vanishing cycles. <br>In the case of a polynomial f in C<sup style="top: -0.3013em;">n+1</sup>, on the one hand the n-th cohomology of a regular fiber carries Deligne’s mixed Hodge structure and on the other hand we have the Brieskorn module H<sup style="top: -0.3013em;">0 </sup>of f which contains the information of the n-th de Rham cohomology of regular fibers. The variation of mixed Hodge structures in such situations is studied by Steenbrink and Zucker (see [30]). In this article we define two filtrations on H<sup style="top: -0.3013em;">0 </sup>based on the mixed Hodge structure of the regular fibers of f. At the beginning my purpose was to find explicit descriptions of arithmetic properties of Hodge cycles for hypersurfaces in projective spaces. Such descriptions for CM-Abelian varieties are well-known but in the case of hypersurfaces we have only descriptions for Fermat varieties (see [27]). As an application we will see that it is possible to write down the property of being a Hodge cycle in terms of the vanishing of certain integrals over cycles generated by vanishing cycles. Such integrals also appear in the context of holomorphic foliations/differential equations (see [19, 20] and the references there). The first advantage of this approach is that we can write some consequences of the Hodge conjecture in terms of periods (see the example at the end of this Introduction and §7). We explain below the results in this article. <br>Let α = (α<sub style="top: 0.1245em;">1</sub>, α<sub style="top: 0.1245em;">2</sub>, . . . , α<sub style="top: 0.1245em;">n+1</sub>) ∈ N<sup style="top: -0.3013em;">n+1 </sup>and assume that the greatest common divisor of all the α<sub style="top: 0.1245em;">i</sub>’s is one. We consider C[x] := C[x<sub style="top: 0.1245em;">1</sub>, x<sub style="top: 0.1245em;">2</sub>, . . . , x<sub style="top: 0.1245em;">n+1</sub>] as a graded algebra with deg(x<sub style="top: 0.1245em;">i</sub>) = α<sub style="top: 0.1245em;">i</sub>. A polynomial f ∈ C[x] is called a quasihomogeneous polynomial of degree d with respect to the grading α if f is a linear combination of monomials of the type x<sup style="top: -0.3013em;">β </sup>:= x<sub style="top: 0.2214em;">1</sub><sup style="top: -0.399em;">β</sup><sup style="top: 0.083em;">1 </sup>x<sub style="top: 0.2214em;">2</sub><sup style="top: -0.399em;">β</sup><sup style="top: 0.083em;">2 </sup>· · · x<sup style="top: -0.4382em;">β</sup><sub style="top: 0.2214em;">n</sub><sup style="top: -0.3551em;">n</sup><sub style="top: 0.2214em;">+</sub><sup style="top: -0.3551em;">+</sup><sub style="top: 0.2214em;">1</sub><sup style="top: -0.3551em;">1 </sup>, α· β := </p><p>P</p><p><sup style="top: -0.4174em;">n+1 </sup>α<sub style="top: 0.1245em;">i</sub>β<sub style="top: 0.1245em;">i </sub>= d. For an arbitrary polynomial f ∈ C[x] one can write in a </p><p>i=1 </p><p>P</p><p>d</p><p>unique way f = <sub style="top: 0.2491em;">i=0 </sub>f<sub style="top: 0.1245em;">i</sub>, f<sub style="top: 0.1245em;">d </sub>= 0, where f<sub style="top: 0.1245em;">i </sub>is a quasi-homogeneous polynomial of degree i. The number d is called the degree of f. Set Sing(f) := </p><p>ꢀ</p><p>∂f ∂x<sub style="top: 0.083em;">i </sub></p><p>= 0, i = 1, 2, . . . , n + 1 . </p><p>Let us be given a polynomial f ∈ C[x]. We assume that f is a (weighted) strongly tame polynomial. In this article this means that there exist natural numbers α<sub style="top: 0.1245em;">1</sub>, α<sub style="top: 0.1245em;">2</sub>, . . . , α<sub style="top: 0.1245em;">n+1 </sub>∈ N such that Sing(g) = {0}, where g = f<sub style="top: 0.1245em;">d </sub>is the last quasi-homogeneous piece of f in the graded algebra C[x], deg(x<sub style="top: 0.1245em;">i</sub>) = α<sub style="top: 0.1245em;">i</sub>. Looking at f as a rational function in the weighted projective space (see </p><p>ANNALES DE L’INSTITUT FOURIER </p><p>MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES </p><p>777 <br>§1) we will see that the strongly tameness condition on f implies that the polynomial f has isolated singularities, <em>i.e., </em>Sing(f) is a discrete set in </p><p>C<sup style="top: -0.3013em;">n+1 </sup></p><p>.<br>We choose a basis x<sup style="top: -0.3013em;">I </sup>= {x<sup style="top: -0.3013em;">β </sup>| β ∈ I} of monomials for the Milnor </p><p>∂g ∂x<sub style="top: 0.083em;">i </sub></p><p>C-vector space V<sub style="top: 0.1245em;">g </sub>:= C[x]/h </p><p>| i = 1, 2, . . . , n + 1i and define </p><p>n+1 </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p>X</p><p>α<sub style="top: 0.1245em;">i </sub><br>(−1)<sup style="top: -0.3428em;">i−1</sup>w<sub style="top: 0.1245em;">i</sub>x<sub style="top: 0.1245em;">i</sub>dx<sub style="top: 0.1245em;">i </sub></p><p>,</p><p>c</p><p>w<sub style="top: 0.1245em;">i </sub>:= , 1 6 i 6 n + 1, η := d</p><p>i=1 </p><p>(0.1) </p><p>n+1 </p><p>X</p><p></p><ul style="display: flex;"><li style="flex:1">A<sub style="top: 0.1245em;">β </sub>:= </li><li style="flex:1">(β<sub style="top: 0.1245em;">i </sub>+ 1)w<sub style="top: 0.1245em;">i</sub>, </li></ul><p></p><p>η<sub style="top: 0.1245em;">β </sub>:= x<sup style="top: -0.3428em;">β</sup>η, β ∈ I </p><p>i=1 </p><p>where dx<sub style="top: 0.1245em;">i </sub>= dx<sub style="top: 0.1245em;">1 </sub>∧ · · · ∧ dx<sub style="top: 0.1245em;">i−1 </sub>∧ dx<sub style="top: 0.1245em;">i+1 </sub>∧ · · · ∧ dx<sub style="top: 0.1245em;">n+1</sub>. It turns out that x<sup style="top: -0.3013em;">I </sup>is also a basis of V<sub style="top: 0.1245em;">f </sub>and so f and g have the same Milnor numbers (see §6). We denote it by µ . We denote by C = {c<sub style="top: 0.1245em;">1</sub>, c<sub style="top: 0.1245em;">2</sub>, . . . , c<sub style="top: 0.1245em;">r</sub>} ⊂ C the set of critical values of f and L<sub style="top: 0.1245em;">c </sub>:= f<sup style="top: -0.3013em;">−1</sup>(c), c ∈ C. The strongly tameness condition on f implies that the fibers L<sub style="top: 0.1245em;">c</sub>, c ∈ C\C are connected and the function f is a C<sup style="top: -0.3013em;">∞ </sup>fiber bundle on C\C (see §1). Let Ω<sup style="top: -0.3013em;">i</sup>, i = 1, 2, . . . , n + 1 be the set of polynomial differential i-forms in C<sup style="top: -0.3013em;">n+1</sup>. The Brieskorn module </p><p>c</p><p>Ω<sup style="top: -0.3013em;">n </sup></p><p>H<sup style="top: -0.3428em;">0 </sup>= H<sub style="top: 0.2052em;">f</sub><sup style="top: -0.3428em;">0 </sup>:= </p><p>df ∧ Ω<sup style="top: -0.2398em;">n−1 </sup>+ dΩ<sup style="top: -0.2398em;">n−1 </sup></p><p>of f is a C[t]-module in a natural way: t· [ω] = [fω], [ω] ∈ H<sup style="top: -0.3013em;">0</sup>. If there is no danger of confusion we will not write the brackets. A direct generalization of the topological argument in [10] in the case n = 1 implies that H<sup style="top: -0.3013em;">0 </sup>is freely generated by the forms η<sub style="top: 0.1245em;">β</sub>, β ∈ I (see Proposition 6.2 for an algebraic proof). <br>Using vanishing theorems and the Atiyah-Hodge-Grothendieck theorem on the de Rham cohomology of affine varieties (see [15]), we see that H<sup style="top: -0.3013em;">0 </sup>restricted to each regular fiber L<sub style="top: 0.1245em;">c</sub>, c ∈ C\C is isomorphic to the n-th de Rham cohomology of L<sub style="top: 0.1245em;">c </sub>with complex coefficients. The Gauss-Manin connection associated to the fibration f on H<sup style="top: -0.3013em;">0 </sup>turns out to be a map </p><p>∇ : H<sup style="top: -0.3428em;">0 </sup>→ H<sub style="top: 0.2052em;">C</sub><sup style="top: -0.3428em;">0 </sup></p><p>0</p><p>e</p><p>satisfying the Leibniz rule, where for a set C ⊂ C by H we mean the </p><p>e</p><p>C</p><p>localization of H<sup style="top: -0.3013em;">0 </sup>on the multiplicative subgroup of C[t] generated by t − </p><p>e</p><p>c, c ∈ C (see §3). Using the Leibniz rule one can extend ∇ to a function from H<sup style="top: -0.3013em;">0 </sup>to itself. Here C is any subset of C containing C. </p><p>ee</p><p>C</p><p>The mixed Hodge structure (W , F<sup style="top: -0.3013em;">•</sup>) of H<sup style="top: -0.3013em;">n</sup>(L<sub style="top: 0.1245em;">c</sub>, C) is defined by Deligne </p><p>•</p><p>in [5] using the hypercohomology interpretation of the cohomology of L<sub style="top: 0.1245em;">c </sub></p><p></p><ul style="display: flex;"><li style="flex:1">TOME 57 (2007), FASCICULE </li><li style="flex:1">3</li></ul><p></p><p>778 </p><p>Hossein MOVASATI </p><p>and the sheaf of meromorphic forms with logarithmic poles. It is natural to define a double filtration (W , F<sup style="top: -0.3013em;">•</sup>) in H<sup style="top: -0.3013em;">0 </sup>as follows: W<sub style="top: 0.1245em;">m</sub>H<sup style="top: -0.3013em;">0</sup>, m ∈ Z </p><p>•</p><p>(resp. F<sup style="top: -0.3013em;">k</sup>H<sup style="top: -0.3013em;">0</sup>, k ∈ Z) consists of elements ψ ∈ H<sup style="top: -0.3013em;">0 </sup>such that the restriction of ψ on all L<sub style="top: 0.1245em;">c</sub>’s except a finite number of them belongs to W<sub style="top: 0.1245em;">m</sub>H<sup style="top: -0.3013em;">n</sup>(L<sub style="top: 0.1245em;">c</sub>, C) (resp. F<sup style="top: -0.3013em;">k</sup>H<sup style="top: -0.3013em;">n</sup>(L<sub style="top: 0.1245em;">c</sub>, C)). In connection to the work of Steenbrink and Zucker, we mention that on C\C we have the variation of mixed Hodge structures H<sup style="top: -0.3013em;">n</sup>(L<sub style="top: 0.1245em;">t</sub>, C), t ∈ C\C. The Brieskorn module H<sup style="top: -0.3013em;">0 </sup>for a strongly tame polynomial gives a free extension to C of the underlying free O<sub style="top: 0.1499em;">C\C</sub>-module. Here we identify coherent sheaves on C with finite modules over C[t] by taking the global sections. Therefore, the mentioned filtrations of H<sup style="top: -0.3013em;">0 </sup>in this text are given by the maximal extensions as C[t]-submodules of the Brieskorn module. Since in our situation H<sup style="top: -0.3013em;">0 </sup>is freely generated of finite rank, they are also freely generated sub-modules of H<sup style="top: -0.3013em;">0</sup>. Their rank is equal to to the dimensions of the mixed Hodge structure of a regular fiber of f. Note that we do not know yet whether Gr<sub style="top: 0.2287em;">F</sub><sup style="top: -0.3013em;">k </sup>Gr<sub style="top: 0.2052em;">m</sub><sup style="top: -0.3013em;">W </sup>H<sup style="top: -0.3013em;">0</sup>, k ∈ Z, m = n, n + 1 are freely generated C[t]-modules. In the same way we define (W , F<sup style="top: -0.3013em;">•</sup>) of the local- </p><p>•</p><p>ization of H<sup style="top: -0.3013em;">0 </sup>over multiplicative subgroups of C[t]. In this article we prove that: </p><p>Theorem 0.1. — <em>Let </em>b ∈ C\C <em>be a regular value of </em>f ∈ C[x]<em>. If </em>f <em>is a (weighted) strongly tame polynomial then </em>Gr<sub style="top: 0.2053em;">m</sub><sup style="top: -0.3013em;">W </sup>H<sup style="top: -0.3013em;">0 </sup>= 0 <em>for </em>m = n, n + 1 </p><p>e</p><p><em>and there exist a map </em>β ∈ I → d<sub style="top: 0.1245em;">β </sub>∈ N ∪ {0} <em>and </em>C ⊂ C ⊂ C <em>such that </em></p><p>e</p><p>b ∈ C <em>and </em></p><p>k</p><p>(0.2) </p><p>∇ η<sub style="top: 0.1245em;">β</sub>, β ∈ I, A<sub style="top: 0.1245em;">β </sub>= k </p><p><em>form a basis of </em>Gr<sub style="top: 0.244em;">F</sub><sup style="top: -0.3551em;">n+1−k</sup>Gr<sub style="top: 0.2061em;">n</sub><sup style="top: -0.3013em;">W</sup><sub style="top: 0.2061em;">+1</sub>H<sup style="top: -0.3013em;">0 </sup><em>and the forms </em></p><p>e</p><p>C</p><p>1</p><p>d</p><p>d<sub style="top: 0.1245em;">β </sub></p><p>d</p><p>k</p><p>(0.3) </p><p>∇ η<sub style="top: 0.1245em;">β</sub>, A<sub style="top: 0.1245em;">β </sub>+ 6 k 6 A<sub style="top: 0.1245em;">β </sub>+ </p><p><em>form a basis of </em>Gr<sub style="top: 0.244em;">F</sub><sup style="top: -0.3552em;">n+1−k</sup>Gr<sub style="top: 0.2052em;">n</sub><sup style="top: -0.3013em;">W </sup>H<sup style="top: -0.3013em;">0 </sup><em>, where </em>∇ = ∇ ◦ ∇ ◦ · · · ◦ ∇ k <em>times. </em></p><p>k</p><p>e</p><p>C</p><p>e</p><p>The numbers d<sub style="top: 0.1245em;">β </sub>and the set C are calculated from a monomial basis of the Jacobian of the homogenization of f−b (see Lemma 6.3) and hence they are not unique and may depend on the choice of b. For a generic b one can put d<sub style="top: 0.1245em;">β </sub>= d − 1 but this is not the case for all b’s (see Example 7.2). In [18] </p><p>e</p><p>the equality C = C is shown for many examples of f in two variables and for a suitable choice of d<sub style="top: 0.1245em;">β</sub>’s. For those examples a similar theorem is proved as above for the Brieskorn module rather than its localization. This has many applications in the theory of Abelian integrals in differential equations (see [11, 20]). When f = g is a quasi-homogeneous polynomial of degree d with an isolated singularity at 0 ∈ C<sup style="top: -0.3013em;">n+1 </sup>our result can be obtained from </p><p>ANNALES DE L’INSTITUT FOURIER </p><p>MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES </p><p>779 <br>J. Steenbrink’s result in [29] using the residue theory adapted to Brieskorn modules (see Lemma 4.1, §4). In this case C = {0} and any two regular </p><p>A<sub style="top: 0.0881em;">β </sub></p><p>t</p><p>fibers are biholomorphic. We have d<sub style="top: 0.1245em;">β </sub>= d − 1, ∀β ∈ I, ∇(η<sub style="top: 0.1245em;">β</sub>) = </p><p>η<sub style="top: 0.1245em;">β </sub></p><p>A<sub style="top: 0.0881em;">β </sub>(A<sub style="top: 0.0881em;">β </sub>−1)···(A<sub style="top: 0.0881em;">β </sub></p><p>k</p><p>and so ∇ η<sub style="top: 0.1245em;">β </sub></p><p>=</p><p><sup style="top: -0.4262em;">−k+1) </sup>η<sub style="top: 0.1245em;">β</sub>. In this case we get the following </p><p>t<sup style="top: -0.166em;">k </sup></p><p>stronger statement: η<sub style="top: 0.1245em;">β</sub>, A<sub style="top: 0.1245em;">β </sub>= k ∈ N form a basis of Gr<sub style="top: 0.244em;">F</sub><sup style="top: -0.3551em;">n+1−k</sup>Gr<sub style="top: 0.2061em;">n</sub><sup style="top: -0.3013em;">W</sup><sub style="top: 0.2061em;">+1</sub>H<sup style="top: -0.3013em;">0 </sup>and η<sub style="top: 0.1245em;">β</sub>, A<sub style="top: 0.1245em;">β </sub>∈ N, −[−A<sub style="top: 0.1245em;">β</sub>] = k form a basis of Gr<sub style="top: 0.244em;">F</sub><sup style="top: -0.3551em;">n+1−k</sup>Gr<sub style="top: 0.2052em;">n</sub><sup style="top: -0.3013em;">W </sup>H<sup style="top: -0.3013em;">0</sup>. <br>One may look at the fibration f = t as an affine variety X defined over the function field C(t) and interpret Theorem 0.1 as the existence of mixed Hodge structure on the de Rham cohomology of X (see [15] and also [22]). However, we note that the Brieskorn module is something finer than the de Rham cohomology of X; for instance if we do not have the tameness property H<sup style="top: -0.3013em;">0 </sup>may not be finitely generated. <br>One of the initial motivations for me to get theorems like Theorem 0.1 was in obtaining the property of being a Hodge cycle in terms of the vanishing of explicit integrals of polynomial n-forms in C<sup style="top: -0.3013em;">n+1</sup>. In the case n even, a cycle in H<sub style="top: 0.1245em;">n</sub>(L<sub style="top: 0.1245em;">c</sub>, Z), c ∈ C is called a Hodge cycle if its image in </p><p></p><ul style="display: flex;"><li style="flex:1">c</li><li style="flex:1">c</li></ul><p></p><p>H<sub style="top: 0.1245em;">n</sub>(L<sub style="top: 0.1245em;">c</sub>, Z) is a Hodge cycle, where L<sub style="top: 0.1245em;">c </sub>is the smooth compactification of L<sub style="top: 0.1245em;">c</sub>. Since the mixed Hodge structure on H<sup style="top: -0.3013em;">n</sup>(L<sub style="top: 0.1245em;">c</sub>, C) is independent of the </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>b</p><p>compactification and the map i : H (L<sub style="top: 0.1245em;">c</sub>, C) → H (L<sub style="top: 0.1245em;">c</sub>, C) induced by the </p><p>c</p><p>inclusion L<sub style="top: 0.1245em;">c </sub>⊂ L<sub style="top: 0.1245em;">c </sub>is a weight zero morphism of mixed Hodge structures, this definition does not depend on the compactification of L<sub style="top: 0.1245em;">c</sub>. Moreover, Gr<sub style="top: 0.2052em;">n</sub><sup style="top: -0.3013em;">W </sup>H<sup style="top: -0.3013em;">n</sup>(L<sub style="top: 0.1245em;">c</sub>, C) in the case α<sub style="top: 0.1245em;">1 </sub>= · · · = α<sub style="top: 0.1245em;">n+1 </sub>= 1 coincides with the primitive cohomology of the canonical compactification and hence, we capture all the Hodge cycles contained in the primitive cohomology (via Poincaré duality). </p><p>Corollary 0.2. — <em>In the situation of Theorem 0.1, a cycle </em>δ<sub style="top: 0.1245em;">c </sub></p><p>∈</p><p>e</p><p>H<sub style="top: 0.1245em;">n</sub>(L<sub style="top: 0.1245em;">c</sub>, Z)<em>, </em>c ∈ C\C <em>is Hodge if and only if </em></p><p>Z</p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>k</p><p>∂</p><p>η<sub style="top: 0.1245em;">β </sub></p><p>|<sub style="top: 0.1245em;">t=c</sub>= 0, ∀(β, k) ∈ I<sub style="top: 0.1245em;">h</sub>, <br>∂t<sup style="top: -0.2398em;">k </sup></p><p>δ<sub style="top: 0.083em;">t </sub>d<sub style="top: 0.0881em;">β </sub></p><p>d</p><p>1</p><p>dn</p><p><em>where </em>I<sub style="top: 0.1245em;">h </sub>= {(β, k) ∈ I × Z | A<sub style="top: 0.1245em;">β </sub>+ 6 k 6 A<sub style="top: 0.1245em;">β </sub>+ , A<sub style="top: 0.1245em;">β </sub>∈ N, k 6 </p><p>}</p><p><em>and </em>{δ<sub style="top: 0.1245em;">t</sub>}<sub style="top: 0.1499em;">t∈(C,c) </sub><em>is a continuous family of cycles in the fibers of </em>f <em>which</em><sup style="top: -0.793em;">2</sup><em>is obtained by using a local topological trivialization of </em>f <em>around </em>c<em>. </em></p><p>Note that </p><p></p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>k</p><p>X</p><p>∂</p><p>k</p><p>η<sub style="top: 0.1245em;">β </sub></p><p>|</p><p>=</p><p>∇ η<sub style="top: 0.1245em;">β </sub>= </p><p>p<sub style="top: 0.1245em;">β,k</sub>(c) η<sub style="top: 0.1245em;">β </sub></p><p>t=c </p><p>∂t<sup style="top: -0.2398em;">k </sup></p><p></p><ul style="display: flex;"><li style="flex:1">δ<sub style="top: 0.083em;">t </sub></li><li style="flex:1">δ<sub style="top: 0.083em;">c </sub></li><li style="flex:1">δ<sub style="top: 0.083em;">c </sub></li></ul><p></p><p>β∈I </p><p>P</p><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">k</li></ul><p></p><p>where ∇ η<sub style="top: 0.1245em;">β </sub></p><p>=</p><p><sub style="top: 0.2491em;">β∈I </sub>p<sub style="top: 0.1245em;">β,k</sub>η<sub style="top: 0.1245em;">β</sub>, p<sub style="top: 0.1245em;">β,k </sub>∈ C[t]<sub style="top: 0.1245em;">C</sub>, and the forms ∇ η<sub style="top: 0.1245em;">β</sub>, (β, k) ∈ </p><p><sup style="top: -0.2231em;">n</sup><sub style="top: 0.2em;">2 </sub>+1 </p><p></p><ul style="display: flex;"><li style="flex:1">I<sub style="top: 0.1245em;">h </sub>form a basis of F </li><li style="flex:1">H<sup style="top: -0.3013em;">0 </sup>∩ W<sub style="top: 0.1245em;">n</sub>H<sup style="top: -0.3013em;">0 </sup>. Also H<sub style="top: 0.1245em;">n</sub>(L<sub style="top: 0.1245em;">c</sub>, Z) is generated by a </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages28 Page
-
File Size-