MAE180A:SPACECRAFTGUIDANCEI Course Description: This is a course in Spacecraft Dynamics.The principles of Astrodynamics are studied,includingthetwobodyorbitalmotioninconicorbits,aswellasorbitdeterminationtechniques from radar observations. Basic spacecraft dynamics are addressed by studying orbital maneuvers, insertionintospecialspacecraftorbits,andinterplanetarymissionsintheSolarSystem. Prerequisite:Upperdivisionstandinginphysics,mathematics,orengineeringdepartment. Instructor:JavierUrzay, Email:[email protected] Office:564EBUII,Phone:8585346123. OfficeHours:Thursdays2:003:00PM,andMondays3:004:00PM,at564EBUII. Reader:WilliamHayes, Email:[email protected] Lectures:TuesdaysandThursdays,11:001:50PM,WLH2112.Totalnumberoflectures:10. Textbook(Required):“FundamentalsofAstrodynamics,”Bate,R.R.,Mueller,D.D.&White,J.E.;Dover Publications,1971.Supplementarymaterialwillbeprovidedinclass. Homeworks: There will be 4 homework assignments. Homework will be assigned each week and collected on Tuesdays on the 7th, 14th, 21st and 28th of July, at the beginning of the lecture. No late homeworkswillbeaccepted.Homeworksolutionsmustbeclean,clearandneatlywritten. Exams:MidtermExam:Thursday16th,11:0012:30PM,WLH2112. FinalExam:August1st,8:0011:00AM,locationTBA. Both exams will consist of two parts: i) Short Questions (closed books, closed notes, no calculator), and ii) Problems (open book and open notes, calculator required). No Blue Books required. GradingScheme:20%Homeworks+35%MidtermExam+45%FinalExam. AcademicIntegrity:UCSDPolicyonIntegrityofScholarshipwillbefollowed. Accomodations for students with disabilities: Requests for appropriate accommodations must be presentedtotheinstructor,andstudentsmustregisterwiththeOfficeforStudentswithDisabilitiesto verifytheireligibilityforappropriateaccommodations. TENTATIVEOUTLINE I.MECHANICSOFPARTICLEMOTION. 1.Newton’slaws: Newton’s laws of motion. Newton’s law of universal gravitation. Universal gravitational constant. Gravitationalacceleration.Standardgravitationalparameter.Weight. 2.Scalarandvectorquantities: Scalars.Vectors.Unitvector.Vectoraddition.Pseudovectors.Resolutionofavector.Scalarproduct.Cross product.Momentofavector.Timederivativeofavector. 3.Kinematics: Velocityandacceleration.Curvilinearplanarmotioninpolarcoordinates.Radialandangularcomponents. Tangentialandnormalcomponents.Intrinsiccoordinates.Generalcaseofspacekinematics:absoluteand relativemotion.MotionrelativetotherotatingEarth. 4.Examples. II.PLANETSANDSATELLITESORBITS. 1.TheNbodyproblem: Total gravitational force. General equation of motion. Earthsatelliteplanets system, Earthsatellite relativeaccelerationandperturbationeffectsfromplanets. 2.Thetwobodyproblem: The equation of relative motion. Constants of the motion: angular momentum, areolar velocity and mechanicalenergy.Trajectoryequation.Orbiteccentricity.Semilatusrectum.OrbitalHamiltonian.Orbit classification: elliptic, circular, parabolic and hyperbolic orbits. Orbital period. Circular speed. Escape speed.Hyperbolicexcessspeed.Turningangle.Canonicalunits.Referenceorbit. 3.Examples. III.ORBITDETERMINATIONFROMOBSERVATIONS. 1.Coordinatesystems: The heliocentricecliptic coordinate system. Ecliptic and equatorial planes. Vernal equinox direction. Precessionoftheequinoxes.Nutation.Thegeocentricequatorialcoordinatesystem.Therightascension declination system. Celestial sphere.The perifocal coordinate system. The topocentrichorizon coordinatesystem.Zenithandnadirdirections. 2.Classicalorbitalelements: Semimajoraxis.Eccentricity.Inclination.Longitudeoftheascendingnode.Argumentoftheperiapsis. Longitudeoftheperiapsis.Trueanomalyatepoch.Argumentoflatitudeatepoch.Truelongitudeat epoch.Eulerangles.Directandretrogradeorbitmotion. 3.Orbitdeterminationfromvelocityandpositionvectors: Fundamentalvectors:angularmomentumvector,nodevectorandeccentricityvector.Inverseproblem. 4.Transformationofcoordinates: Rotational transformation matrix. Transformation from geocentricequatorial to topocentrichorizon coordinates.Transformationfromperifocaltogeocentricequatorialcoordinates. 5.Orbitdeterminationfromasingleradarobservation: Position and velocity relative to the radar site.Position and velocity from the geocentricequatorial coordinatesystem. 6.Orbitdeterminationfromthreepositionobservations: TheGibbsianmethod.Determinationofthesatellitevelocity. 7.InfluencesofEarth’soblateness: Thereferenceellipsoid.Equatorialandpolarradius.EccentricityoftheEarth.Astronomical,geodeticand geocentric latitudes. Station coordinates. Position of the Topocentrichorizon system on an ellipsoidal Earth. 8.Themeasurementoftime: Apparentsolartime.Meansolartime.Siderealtime.TimezonesandtheUniversaltime.TheGreenwich meridianlongitude. 9.Groundtrackofasatellite: Ground trace on a rotating and nonrotating Earth. Maximum latitude above equator. Spacecraft elevationangle.Spacecrafthorizon.Subsatellitepoint.Swathwidth.Launchazimuth.(Lecture5) 10.Examples. IV.ORBITALMANEUVERS. 1.Inplaneorbitmaneuvers: Orbitalvelocity.Simplecoplanarorbitchange.Generalcoplanarmaneuver.TheHohmanntransfer.Time ofFlight.Generalcoplanartransfer.Timeofflightasafunctionoftheeccentricanomaly.(Lecture6) 2.Outofplaneorbitmaneuvers: Simpleplanechanges. 3.Timeofflightasafunctionoftheeccentricanomaly: Timeofflightontheellipticalorbit.Kepler’sequation.Meanmotion.Meananomaly.Timeofflighton parabolicandhyperbolicorbits. 4.Propulsionformaneuvers: Thrust.Massofpropellant.Specificimpulse. 5.Examples. V.SPECIALORBITS. 1.LowaltitudeEarthorbits: LEOorbits.VanAllenbeltradiationanddrageffects.Regressionofthelineofnodes.Rotationoftheline ofapsides. 2.HighaltitudeEarthorbits: The Geosynchronous orbit (GEO). The Geosynchronous transfer orbit (GTO). The GEO mission. Supersynchronousorbits.TheGraveyardorbit.SunSynchronousorbits.TheMolniyaorbit. VI.INTERPLANETARYMISSIONS. 1.TheSolarsystem: GeometryoftheSolarsystem.Theeclipticplane.Theastronomicalunit.TheAstronomicalAlmanac. 2.Patchedconicapproximation: Sphere of influence. Heliocentric transfer orbits. Mission stages. Transfer stage. Orbital velocity at departure. Time of flight transfer. Departure stage. Phase angle at departure. Launch opportunity. Synodic period. Escape from the Earth’s sphere of influence. Hyperbolic excess velocity. Velocity and pointofinjection.Departurebodyofrevolution.Launchwindow.Arrivalatthetargetplanet.Offsetmiss distance.Effectivecollisionsection.Establishmentofplanetaryorbitatarrival. 3.Gravityassistedmaneuvers: Spacecraft velocity decrease and increase maneuvers. Maximum turning angle. Maximum spacecraft velocityincrease. 4.Examples. MAE180A:SPACECRAFTGUIDANCE SUMMERSESSIONI MECHANICALANDAEROSPACEENGINEERING UNIVERSITYOFCALIFORNIASANDIEGO SPECIALLECTURE ThursdayJuly30th,11:00AM12:00PM,479EBUII “MAKINGTHESPACESHUTTLEAFLYINGMACHINE”, BY Dr.LEER.SCHERER. Dr.SchererwasinvolvedintheSpaceProgramfromitsbeginningintheearly1960's.Heserveda total of 22 years in NASA. Assignments included Director of Unmanned Lunar Programs (NASA Headquarters),DirectoroftheApolloLunarExplorationOffice(NASAHeadquarters),CenterDirector of Dryden Flight Research Center, and Center Director of Kennedy Space Center. In industry he worked for General Dynamics as Marketing Director for Atlas Launch Services to satellite users. Since retirement he has acted as a consultant on Space matters to industry and to the federal government.Dr.SchererholdsaB.Sc.degree(MarineEngineering)fromtheU.S.NavalAcademy andaB.Sc.degree(AeronauticalEngineering)fromtheNavyPostGraduateSchool.Healsohasa ProfessionalDegree(AeronauticalEngineering)fromtheCaliforniaInstituteofTechnology(Caltech), andanHonoraryDoctorateinEngineeringfromtheUniversityofCentralFlorida. HislecturewillbrieflyreviewthehistoryofmannedspaceflightandfocusontheSpaceShuttle. TheMAEcommunityiscordiallyinvited. .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages5 Page
-
File Size-