Quantum Groupoids Acting on Semiprime Algebras

Quantum Groupoids Acting on Semiprime Algebras

<p>Hindawi Publishing Corporation Advances in Mathematical Physics Volume 2011, Article ID 546058, 9 pages doi:10.1155/2011/546058 </p><p><em>Research Article </em></p><p><strong>Quantum Groupoids Acting on Semiprime Algebras </strong></p><p><strong>Ineˆs Borges</strong><sup style="top: -0.3615em;"><strong>1 </strong></sup><strong>and Christian Lomp</strong><sup style="top: -0.3615em;"><strong>2 </strong></sup></p><p></p><ul style="display: flex;"><li style="flex:1"><sup style="top: -0.2632em;"><em>1 </em></sup><em>Instituto Superior De Contabilidade e Administra c ¸ao de Coimbra, Quinta Agr ı cola-Bencanta, </em></li><li style="flex:1"><em>˜</em></li><li style="flex:1"><em>´</em></li></ul><p><em>3040-316 Coimbra, Portugal </em></p><ul style="display: flex;"><li style="flex:1"><sup style="top: -0.264em;"><em>2 </em></sup><em>Departamento de Matematica, Faculdade de Ciencias, Universidade do Porto, Rua Campo Alegre 687, </em></li><li style="flex:1"><em>´</em></li><li style="flex:1"><em>ˆ</em></li></ul><p><em>4169-007 Porto, Portugal </em></p><p>Correspondence should be addressed to Christian Lomp, <a href="mailto:[email protected]" target="_blank">[email protected] </a>Received 30 March 2011; Accepted 5 June 2011 Academic Editor: Olaf Lechtenfeld Copyright q 2011 I. Borges and C. Lomp.&nbsp;This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. </p><p>Following Linchenko and Montgomery’s arguments we show that the smash product of an involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity, is semiprime. </p><p><strong>1. Introduction </strong></p><p>Group actions, Lie algebras acting as derivations and finite group gradings are typical examples of Hopf algebra actions which have been studied for many years. Several generalizations of Hopf algebras have emerged in recent years, like weak Hopf algebras ꢀor quantum </p><ul style="display: flex;"><li style="flex:1">groupoidsꢁ introduced by Bohm et al. ꢂ1ꢃ. The action of such objects on algebras, as given by </li><li style="flex:1">¨</li></ul><p>quantum groupoids acting on <em>C</em><sup style="top: -0.3016em;">∗</sup>-algebras, ꢂ2ꢃ or weak Hopf algebras arising from Jones towers ꢂ3ꢃ are particularly interesting. New examples of weak Hopf algebras arose from double groupoids ꢂ4ꢃ, which were also used to find new weak Hopf actions ꢀsee ꢂ2ꢃꢁ. <br>A long-standing open problem in the theory of Hopf action is to show that the smash product <em>A</em>#<em>H </em>of a semiprime module algebra <em>A </em>and a semisimple Hopf algebra <em>H </em>is again semiprime ꢀsee ꢂ5ꢃꢁ ꢀan algebra <em>A </em>is semiprime if it does not contain nonzero nilpotent ideals.ꢁ. The case of <em>A </em>being commutative had been settled in ꢂ6ꢃ. The most recent partial answer to this problem has been given by Linchenko and Montgomery in ꢂ7ꢃ where they prove the semiprimness of <em>A</em>#<em>H </em>under the condition of <em>A </em>satisfying a polynomial identity. The purpose of this note is that their result carries over to actions of weak Hopf algebras. We reach more generality by considering actions of linear operators that satisfy certain intertwining relations with the regular multiplications on the algebra. </p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">Advances in Mathematical Physics </li></ul><p>Let <em>k </em>be a commutative ring and let <em>A </em>be an associative unital <em>k</em>-algebra. For any </p><p><em>a </em>∈ <em>A </em>define two linear operators <em>L</em>ꢀ<em>a</em>ꢁ and <em>R</em>ꢀ<em>a</em>ꢁ in End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ given by ꢀ<em>L</em>ꢀ<em>a</em>ꢁ<em>, x</em>ꢁ ꢄ <em>ax </em>and ꢀ<em>R</em>ꢀ<em>a</em>ꢁ<em>, x</em>ꢁ ꢄ <em>xa </em>for all <em>x </em>∈ <em>A</em>. We identify <em>A </em>with the subalgebra <em>L</em>ꢀ<em>A</em>ꢁ of End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ generated </p><p>by all left multiplications <em>L</em>ꢀ<em>a</em>ꢁ and denote the subalgebra generated by all operators <em>L</em>ꢀ<em>a</em>ꢁ and <em>R</em>ꢀ<em>a</em>ꢁ by <em>M</em>ꢀ<em>A</em>ꢁ, which is also sometimes referred to as the <em>multiplication algebra </em>of <em>A</em>. As a left <em>L</em>ꢀ<em>A</em>ꢁ-module, <em>A </em>is isomorphic to <em>L</em>ꢀ<em>A</em>ꢁ since we assume <em>A </em>to be unital. We will be interested in certain actions on an algebra <em>A </em>that may stem from a bialgebra or more generally a bialgebroid. The situation we will encounter is the one where we have an extension <em>A </em>⊆ <em>B </em></p><p>where <em>B </em>acts on <em>A </em>through a ring homomorphism <em>φ </em>: <em>B </em>→ End<sub style="top: 0.1244em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ such that ꢀ<em>a</em>ꢁ<em>φ </em>ꢄ <em>L</em>ꢀ<em>a</em>ꢁ </p><p>for all <em>a </em>∈ <em>A</em>. For the intrinsic properties of <em>A </em>under this action it is enough to look at the subalgebra <em>φ</em>ꢀ<em>B</em>ꢁ in End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ generated by this action and we might consider intermediate algebras <em>L</em>ꢀ<em>A</em>ꢁ ⊆ <em>B </em>⊆ End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ instead. Hence let <em>B </em>be a subalgebra of End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ that contains <em>L</em>ꢀ<em>A</em>ꢁ. Then <em>A </em>becomes a cyclic faithful left <em>B</em>-module by evaluating endomorphisms, that is, </p><p>for all <em>b </em>∈ <em>B, a </em>∈ <em>A </em>: <em>b</em>·<em>a </em>:ꢄ ꢀ<em>b, a</em>ꢁ. Note that for any <em>a</em><sup style="top: -0.3015em;">ꢂ </sup>∈ <em>A </em>we have <em>L</em>ꢀ<em>a</em><sup style="top: -0.3015em;">ꢂ</sup>ꢁ·<em>a </em>ꢄ ꢀ<em>L</em>ꢀ<em>a</em><sup style="top: -0.3015em;">ꢂ</sup>ꢁ<em>, a</em>ꢁ ꢄ <em>a</em><sup style="top: -0.3015em;">ꢂ</sup><em>a</em>. </p><p>Since we assume <em>A </em>to be unital, the map Ψ : End<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A</em>ꢁ → <em>A </em>with Ψꢀ<em>f</em>ꢁ ꢄ ꢀ1ꢁ<em>f</em>, for all <em>f </em>∈ End<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A</em>ꢁ—evaluating endomorphisms at 1—is an injective ring homomorphism, since </p><p>for all <em>f, g &nbsp;</em>∈ End<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A</em>ꢁ : Ψꢀ<em>f </em>◦ <em>g</em>ꢁ ꢄ ꢀꢀ1ꢁ<em>f</em>ꢁ<em>g </em>ꢄ ꢀꢀ1ꢁ<em>f </em>· 1ꢁ<em>g </em>ꢄ ꢀ1ꢁ<em>f </em>· ꢀ1ꢁ<em>g </em>ꢄ Ψꢀ<em>f</em>ꢁΨꢀ<em>g</em>ꢁ. Moreover if Ψꢀ<em>f</em>ꢁ ꢄ ꢀ1ꢁ<em>f </em>ꢄ 0, then ꢀ<em>a</em>ꢁ<em>f </em>ꢄ <em>a</em>ꢀ1ꢁ<em>f </em>ꢄ 0 and <em>f </em>ꢄ 0. The subalgebra ΨꢀEnd<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A</em>ꢁꢁ can be described as the set of elements <em>a </em>∈ <em>A </em>such that for any <em>b </em>∈ <em>B </em>: <em>b </em>· <em>a </em>ꢄ ꢀ<em>b </em>· 1ꢁ<em>a</em>, which we will denote by <em>A</em><sup style="top: -0.3015em;"><em>B</em></sup>. On one hand if <em>a </em>ꢄ ꢀ1ꢁ<em>f </em>ꢄ Ψꢀ<em>f</em>ꢁ for some <em>f </em>∈ End<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A</em>ꢁ, then for any <em>b </em>∈ <em>B </em>: <em>b</em>·<em>a </em>ꢄ ꢀ<em>b</em>·1ꢁ<em>f </em>ꢄ <em>L</em>ꢀꢀ<em>b</em>·1ꢁꢁ·ꢀ1ꢁ<em>f </em>ꢄ ꢀ<em>b</em>·1ꢁ<em>a </em>and on the other hand if <em>a </em>∈ <em>A</em><sup style="top: -0.3015em;"><em>B</em></sup>, then <em>f </em>ꢄ <em>R</em>ꢀ<em>a</em>ꢁ is left <em>B</em>-linear since for any <em>b </em>∈ <em>B </em>and <em>x </em>∈ <em>A</em>: </p><p><em>b </em>· ꢀ<em>x</em>ꢁ<em>f </em>ꢄ <em>b </em>· ꢀ<em>xa</em>ꢁ ꢄ <em>b </em>· ꢀ<em>L</em>ꢀ<em>x</em>ꢁ · <em>a</em>ꢁ ꢄ ꢀ<em>bL</em>ꢀ<em>x</em>ꢁꢁ · <em>a </em>ꢄ ꢀ<em>bL</em>ꢀ<em>x</em>ꢁ · 1ꢁ<em>a </em></p><p>ꢀ1.1ꢁ </p><p>ꢄ ꢀ<em>b </em>· ꢀ<em>L</em>ꢀ<em>x</em>ꢁ · 1ꢁꢁ<em>a </em>ꢄ ꢀ<em>b </em>· <em>x</em>ꢁ<em>a </em>ꢄ ꢀ<em>b </em>· <em>x</em>ꢁ<em>f. </em></p><p>Thus End<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A</em>ꢁ ꢃ <em>A</em><sup style="top: -0.3015em;"><em>B</em></sup>. </p><p>Let <em>M </em>be any left <em>B</em>-module and define <em>M</em><sup style="top: -0.3015em;"><em>B </em></sup>ꢄ {<em>m </em>∈ <em>M </em>: ∀<em>b </em>∈ <em>B </em>: <em>b </em>· <em>m </em>ꢄ ꢀ<em>b </em>· 1ꢁ<em>m</em>}. With </p><p>the same argument as above one sees that Ψ<sub style="top: 0.1245em;"><em>M </em></sub>: Hom<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A, M</em>ꢁ → <em>M</em><sup style="top: -0.3015em;"><em>B </em></sup>with Ψꢀ<em>f</em>ꢁ ꢄ ꢀ1ꢁ<em>f </em>is an isomorphism of abelian groups, hence yielding a left <em>A</em><sup style="top: -0.3008em;"><em>B</em></sup>-module structure on <em>M</em><sup style="top: -0.3008em;"><em>B</em></sup>. Moreover it is possible to show that Hom<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A, </em>−ꢁ is isomorphic to ꢀ−ꢁ<sup style="top: -0.3833em;"><em>B </em></sup>as functors from <em>B</em>-Mod to <em>A</em><sup style="top: -0.3015em;"><em>B</em></sup>- Mod. <br>A subset <em>I </em>of <em>A </em>is called <em>B</em>-stable if <em>B </em>· <em>I </em>⊆ <em>I</em>. The <em>B</em>-stable left ideals are precisely the </p><p>ꢀleftꢁ <em>B</em>-submodules of <em>A</em>. In particular Hom<sub style="top: 0.1244em;"><em>B</em></sub>ꢀ<em>A, I</em>ꢁ ꢃ <em>I</em><sup style="top: -0.3016em;"><em>B </em></sup>ꢄ <em>I </em>∩ <em>A</em><sup style="top: -0.3015em;"><em>B</em></sup>, for any <em>B</em>-stable left ideal of <em>A</em>. </p><p><em>Examples 1.1. &nbsp;</em>The following list illustrates that our aproach reflects many interesting cases of algebras with actions. </p><p>ꢀ1ꢁ Let <em>B </em>ꢄ <em>M</em>ꢀ<em>A</em>ꢁ be the multiplication algebra of <em>A</em>, then <em>A </em>is a faithful cyclic left <br><em>B</em>-module. The left <em>B</em>-modules are precisely the <em>A</em>-bimodules, in particular the left </p><p>ideals of <em>A </em>are the two-sided ideals of <em>A</em>, and Hom<sub style="top: 0.1244em;"><em>B</em></sub>ꢀ<em>A, M</em>ꢁ ꢃ <em>M</em><sup style="top: -0.3008em;"><em>B </em></sup>ꢄ <em>Z</em>ꢀ<em>M</em>ꢁ ꢄ {<em>m </em>∈ <em>M </em>| ∀<em>a </em>∈ <em>A </em>: <em>am </em>ꢄ <em>ma</em>} holds for any <em>A</em>-bimodule <em>M</em>. The operator algebra <em>B </em>is a quotient of the enveloping algebra <em>A</em><sup style="top: -0.3015em;"><em>e </em></sup>ꢄ <em>A</em>⊗<em>A</em><sup style="top: -0.3015em;">op </sup>through the map <em>a</em>⊗<em>b </em>→ <em>L</em>ꢀ<em>a</em>ꢁ◦<em>R</em>ꢀ<em>b</em>ꢁ, for all <em>a </em>⊗ <em>b </em>∈ <em>A</em><sup style="top: -0.3015em;"><em>e</em></sup>. </p><p>ꢀ2ꢁ Let <em>G </em>be a group acting as ꢀ<em>k</em>-linearꢁ automorphisms on <em>A</em>, that is, there exists a </p><p>group homomorphism <em>η </em>: <em>G </em>→ Aut<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ. Set <sup style="top: -0.3015em;"><em>g</em></sup><em>a </em>ꢄ ꢀ<em>η</em>ꢀ<em>g</em>ꢁ<em>, a</em>ꢁ for any <em>a </em>∈ <em>A, g &nbsp;</em>∈ <em>G</em>. </p><p></p><ul style="display: flex;"><li style="flex:1">Advances in Mathematical Physics </li><li style="flex:1">3</li></ul><p></p><p>Define <em>B </em>ꢄ ꢀ<em>L</em>ꢀ<em>A</em>ꢁ ∪ {<em>η</em>ꢀ<em>g</em>ꢁ | <em>g </em>∈ <em>G</em>}ꢁ ⊆ End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ. Then the left <em>B</em>-submodules <em>I </em>of <em>A </em><sup style="top: -0.3247em;"><em>g</em></sup><em>x </em></p><ul style="display: flex;"><li style="flex:1">are precisely the <em>G</em>-stable left ideals of <em>A </em>and Hom<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A, I</em>ꢁ ꢃ <em>I</em><sup style="top: -0.3008em;"><em>B </em></sup>ꢄ {<em>x </em>∈ <em>I </em>| </li><li style="flex:1">ꢄ <em>x</em>}. </li></ul><p></p><p><em>B </em>is a quotient of the skew group ring <em>A</em>#<em>G </em>whose underlying <em>A</em>-submodule is the free left <em>A</em>-module with basis {<em>g </em>| <em>g </em>∈ <em>G</em>} and whose multiplication is </p><p>given by ꢀ<em>a</em>#<em>g</em>ꢁꢀ<em>b</em>#<em>h</em>ꢁ ꢄ <em>a</em><sup style="top: -0.3015em;"><em>g</em></sup><em>b</em>#<em>gh</em>. Note that for any left <em>A</em>#<em>G</em>-module <em>M </em>we have, Hom<sub style="top: 0.1245em;"><em>A</em>#<em>G</em></sub>ꢀ<em>A, M</em>ꢁ ꢄ Hom<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A, M</em>ꢁ ꢃ <em>M</em><sup style="top: -0.3008em;"><em>G </em></sup>is the set of fixed elements of <em>M</em>. </p><p>ꢀ3ꢁ Let <em>A </em>be an <em>k</em>-algebra with involution ∗ and let <em>B </em>be the subalgebra of End<sub style="top: 0.1245em;"><em>A</em></sub>ꢀ ꢁ </p><p>generated by <em>A </em>and ∗. Since for any <em>a </em>∈ <em>A </em>: <em>R</em>ꢀ<em>a</em>ꢁ ꢄ ∗ ◦ <em>L</em>ꢀ<em>a</em><sup style="top: -0.3015em;">∗</sup>ꢁ ◦ ∗ we got <em>M</em>ꢀ<em>A</em>ꢁ ⊆ <em>B</em>. </p><p>This means ꢀas it is well-knownꢁ that any left ideal of <em>A </em>which is stable under ∗ is a two-sided ideal. Note that <em>B </em>can be seen as the factor ring of the skew-group ring <em>A</em><sup style="top: -0.3016em;"><em>e</em></sup>#<em>G </em>where <em>G </em>ꢄ {id<em>, </em>∗} is the cyclic group of order two and ∗ ∈ Autꢀ<em>A</em><sup style="top: -0.3016em;"><em>e</em></sup>ꢁ is given </p><p>by ꢀ<em>a </em>⊗ <em>b</em>ꢁ<sup style="top: -0.3832em;">∗ </sup>:ꢄ <em>b</em><sup style="top: -0.3015em;">∗ </sup>⊗ <em>a</em><sup style="top: -0.3015em;">∗</sup>. <br>ꢀ4ꢁ Let <em>δ </em>∈ Der<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ be an <em>k</em>-linear derivation of <em>A </em>and consider <em>B </em>ꢄ ꢀ<em>L</em>ꢀ<em>A</em>ꢁ ∪ {<em>δ</em>}ꢁ ⊆ <br>End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ. The left <em>B</em>-submodules of <em>A </em>are the left ideals <em>I </em>that satisfy <em>δ</em>ꢀ<em>I</em>ꢁ ⊆ <em>I</em>. The </p><p>operator algebra <em>B </em>is a factor of the ring of differential operator <em>A</em>ꢂ<em>z</em>; <em>δ</em>ꢃ, which as </p><p>a left <em>A</em>-module is equal to <em>A</em>ꢂ<em>z</em>ꢃ and its multiplication is given by <em>za </em>ꢄ <em>az δ</em>ꢀ<em>a</em>ꢁ. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>n</em></li><li style="flex:1"><em>n</em></li></ul><p></p><p>The map <em>A</em>ꢂ<em>z</em>; <em>δ</em>ꢃ → <em>B </em>with <sub style="top: 0.2183em;"><em>i</em>ꢄ0 </sub><em>a</em><sub style="top: 0.1245em;"><em>i</em></sub><em>z</em><sup style="top: -0.3015em;"><em>i </em></sup>→ <sub style="top: 0.2183em;"><em>i</em>ꢄ0 </sub><em>L</em>ꢀ<em>a</em><sub style="top: 0.1245em;"><em>i</em></sub>ꢁ ◦ <em>δ</em><sup style="top: -0.3015em;"><em>i </em></sup>∈ <em>B </em>is a surjective <em>k</em>-algebra homomorphism and for any left <em>A</em>ꢂ<em>z</em>; <em>δ</em>ꢃ-module <em>M </em>we have Hom<sub style="top: 0.1245em;"><em>A</em>ꢂ<em>z</em>;<em>δ</em>ꢃ</sub>ꢀ<em>A, M</em>ꢁ ꢄ Hom<sub style="top: 0.1245em;"><em>B</em></sub>ꢀ<em>A, M</em>ꢁ ꢄ <em>M</em><sup style="top: -0.3008em;"><em>δ </em></sup>ꢄ {<em>m </em>∈ <em>M </em>| <em>zm </em>ꢄ 0}. In particular End<sub style="top: 0.1245em;"><em>A</em>ꢂ<em>z</em>;<em>δ</em>ꢃ</sub>ꢀ<em>A</em>ꢁ ꢃ <em>A</em><sup style="top: -0.3008em;"><em>δ </em></sup>ꢄ Kerꢀ<em>δ</em>ꢁ. </p><p>The subring <em>A</em><sup style="top: -0.3015em;"><em>δ </em></sup>of <em>A </em>is called the ring of constants of <em>δ</em>. <br>ꢀ5ꢁ Let <em>H </em>be an <em>k</em>-Hopf algebra action on <em>A</em>. Let us denote the action of an element </p><p><em>h </em>∈ <em>H </em>on <em>A </em>by <em>λ</em><sub style="top: 0.1245em;"><em>h </em></sub>∈ End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ and define <em>B </em>ꢄ ꢀ<em>L</em>ꢀ<em>A</em>ꢁ ∪ {<em>λ</em><sub style="top: 0.1245em;"><em>h </em></sub>| <em>h </em>∈ <em>H</em>}ꢁ ⊆ End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ. </p><p>The smash product <em>A</em>#<em>H </em>is an extension with additional module structure. Define </p><p><em>ϕ </em>: <em>A</em>#<em>H </em>→ End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ by <em>ϕ</em>ꢀ<em>a</em>#<em>h</em>ꢁ :ꢄ <em>L</em>ꢀ<em>a</em>ꢁ ◦ <em>λ</em><sub style="top: 0.1245em;"><em>h</em></sub>. </p><p><strong>2. Linear Operators Acting on Algebras Satisfying a Polynomial Identity </strong></p><p>Let <em>L</em>ꢀ<em>A</em>ꢁ ⊆ <em>B </em>⊆ End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ be any intermediate algebra as above. <br>The first technical lemma generalizes a corresponding result of Linchenko ꢂ8, Theorem 3.1ꢃ for Hopf actions and Nikshych ꢂ9, Theorem 6.1.3ꢃ for weak Hopf actions. Recall that an ideal whose elements are nilpotent is called a nil ideal. </p><p><strong>Lemma 2.1.&nbsp;</strong><em>Let L</em>ꢀ<em>A</em>ꢁ ⊆ <em>B </em>⊆ End<sub style="top: 0.1245em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ <em>and suppose that for all ψ </em>∈ <em>B there exist m </em>≥ 1 <em>and elements </em></p><p><em>ψ</em><sub style="top: 0.2797em;">1</sub><sup style="top: -0.3143em;">1</sup><em>, . . . , ψ</em><sub style="top: 0.2047em;"><em>m</em></sub><sup style="top: -0.3015em;">1 </sup><em>, ψ</em><sub style="top: 0.2797em;">1</sub><sup style="top: -0.3143em;">2</sup><em>, . . . , ψ</em><sub style="top: 0.2047em;"><em>m</em></sub><sup style="top: -0.3015em;">2 </sup>∈ <em>B such that </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>m</em></li><li style="flex:1"><em>n</em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢅ</li><li style="flex:1">ꢅ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢁꢂ </li><li style="flex:1">ꢃꢄ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>L</em></li><li style="flex:1"><em>ψ, a </em></li></ul><p></p><p>ꢄ</p><p><em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3427em;">1 </sup>◦ <em>L</em>ꢀ<em>a</em>ꢁ ◦ <em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3427em;">2</sup><em>, ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3427em;">2 </sup>◦ <em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3427em;">1 </sup>∈ <em>L</em>ꢀ<em>A</em>ꢁ </p><p>ꢀ2.1ꢁ </p><p></p><ul style="display: flex;"><li style="flex:1"><em>i</em>ꢄ1 </li><li style="flex:1"><em>i</em>ꢄ1 </li></ul><p></p><p><em>for any a </em>∈ <em>A . If A is finite dimensional over a field of characteristic 0 and if I is a nil ideal, then B </em>· <em>I is nil. In particular the Jacobson radical of A is B -stable. </em></p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">Advances in Mathematical Physics </li></ul><p></p><p><em>Proof. </em>Denote the trace of a <em>k</em>-linear endomorphism <em>f </em>of <em>A </em>by Trꢀ<em>f</em>ꢁ. Let <em>ψ </em>∈ <em>B</em>, <em>a </em>∈ <em>A</em>. Using Trꢀ<em>f gh</em>ꢁ ꢄ Trꢀ<em>h f g</em>ꢁ and the hypotheses we get </p><p>ꢆꢆ </p><p><em>n</em></p><p>ꢅ</p><ul style="display: flex;"><li style="flex:1">ꢁ ꢁꢂ </li><li style="flex:1">ꢃꢄꢄ </li><li style="flex:1">ꢁ ꢁ ꢄ </li><li style="flex:1">ꢄ</li><li style="flex:1">ꢁ ꢁ&nbsp;ꢄꢄ </li></ul><p></p><p>Tr <em>L ψ, &nbsp; a </em></p><p>ꢄ Tr </p><p><em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3427em;">2 </sup>◦ <em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3427em;">1 </sup>◦ <em>L</em>ꢀ<em>a</em>ꢁ ꢄ&nbsp;Tr <em>L y &nbsp;</em>◦ <em>L</em>ꢀ<em>a</em>ꢁ ꢄ&nbsp;Tr <em>L ya </em></p><p>ꢀ2.2ꢁ </p><p><em>i</em>ꢄ1 </p><p>for some <em>y </em>∈ <em>A</em>. Suppose that <em>a </em>∈ <em>I </em>with <em>I </em>a nil ideal, then <em>ya </em>∈ <em>I </em>is nilpotent, hence </p><p><em>k</em></p><p>Trꢀ<em>L</em>ꢀꢀ<em>ψ, a</em>ꢁꢁꢁ ꢄ Trꢀ<em>L</em>ꢀ<em>ya</em>ꢁꢁ ꢄ 0. For any <em>k &gt; </em>0 set <em>z</em><sup style="top: -0.3015em;"><em>k </em></sup>:ꢄ ꢀ<em>ψ, a</em>ꢁ . Then </p><p><em>n</em></p><p></p><ul style="display: flex;"><li style="flex:1">ꢇ</li><li style="flex:1">ꢈ</li><li style="flex:1">ꢇ</li><li style="flex:1">ꢈ</li></ul><p>ꢅ</p><ul style="display: flex;"><li style="flex:1">ꢁꢂ </li><li style="flex:1">ꢃꢄ </li></ul><p></p><p><em>z</em><sup style="top: -0.3428em;"><em>k </em></sup>ꢄ </p><p></p><ul style="display: flex;"><li style="flex:1"><em>L</em></li><li style="flex:1"><em>ψ, a &nbsp; , z</em><sup style="top: -0.3427em;"><em>k</em>−1 </sup></li></ul><p></p><p>ꢄ</p><p><em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3427em;">1</sup><em>, a</em><sub style="top: 0.1245em;"><em>i </em></sub></p><p>ꢀ2.3ꢁ </p><p><em>i</em>ꢄ1 </p><p>for <em>a</em><sub style="top: 0.1246em;"><em>i </em></sub>ꢄ <em>a</em>ꢀ<em>ψ</em><sub style="top: 0.2746em;"><em>i</em></sub><sup style="top: -0.3134em;">2</sup><em>, z</em><sup style="top: -0.3014em;"><em>k</em>−1</sup>ꢁ. Since <em>I </em>is an ideal, <em>a</em><sub style="top: 0.1245em;"><em>i </em></sub>∈ <em>I</em>. Hence </p><p><em>n</em></p><p></p><ul style="display: flex;"><li style="flex:1">ꢉ</li><li style="flex:1">ꢊ</li><li style="flex:1">ꢉ ꢉ&nbsp;ꢊꢊ </li><li style="flex:1">ꢉ ꢉꢇ </li><li style="flex:1">ꢈꢊꢊ </li></ul><p>ꢅ</p><p>Tr <em>L</em>ꢀ<em>z</em>ꢁ<sup style="top: -0.3773em;"><em>k </em></sup>ꢄ Tr <em>L z</em><sup style="top: -0.3435em;"><em>k </em></sup></p><p>ꢄ</p><p></p><ul style="display: flex;"><li style="flex:1">Tr <em>L ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3435em;">1</sup><em>, a</em><sub style="top: 0.1245em;"><em>i </em></sub></li><li style="flex:1">ꢄ 0<em>. </em></li></ul><p></p><p>ꢀ2.4ꢁ </p><p><em>i</em>ꢄ1 </p><p>Since <em>A </em>is finite dimensional, charꢀ<em>k</em>ꢁ ꢄ 0 and the trace of all powers of <em>L</em>ꢀ<em>z</em>ꢁ is zero, <em>L</em>ꢀ<em>z</em>ꢁ is a nilpotent operator, that is, <em>z </em>ꢄ ꢀ<em>ψ, a</em>ꢁ is nilpotent. Thus <em>B </em>· <em>I </em>is a nil ideal. Since the Jacobson radical of an Artinian ring is the largest nilpotent ideal, we have <em>B </em>· Jacꢀ<em>A</em>ꢁ ꢄ Jacꢀ<em>A</em>ꢁ. </p><p>The last lemma, which had been proven first by Linchenko for Hopf actions and then by Nikshych for weak Hopf actions allows us to show the stability of the Jacobson radical of an algebra <em>A </em>which satisfies a polynomial identity and on which act some operator algebra <em>B </em>which is finitely generated over <em>A</em>. The hypotheses of the following theorem allow the reduction to finite-dimensional factors. </p><p><strong>Theorem 2.2. </strong><em>Let L</em>ꢀ<em>A</em>ꢁ ⊆ <em>B </em>⊆ End<sub style="top: 0.1244em;"><em>k</em></sub>ꢀ<em>A</em>ꢁ <em>over some field k of characteristic 0 with B being finitely generated as right A -module. Suppose that for all ψ </em>∈ <em>B there exist n </em>≥ 1 <em>and elements </em></p><p><em>ψ</em><sub style="top: 0.2805em;">1</sub><sup style="top: -0.3135em;">1</sup><em>, . . . , ψ</em><sub style="top: 0.2054em;"><em>m</em></sub><sup style="top: -0.3008em;">1 </sup><em>, ψ</em><sub style="top: 0.2805em;">1</sub><sup style="top: -0.3135em;">2</sup><em>, . . . , ψ</em><sub style="top: 0.2054em;"><em>m</em></sub><sup style="top: -0.3008em;">2 </sup>∈ <em>B satisfying </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>m</em></li><li style="flex:1"><em>m</em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢅ</li><li style="flex:1">ꢅ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢁꢂ </li><li style="flex:1">ꢃꢄ </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>L</em></li><li style="flex:1"><em>ψ, a </em></li></ul><p></p><p>ꢄ</p><p><em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3428em;">1 </sup>◦ <em>L</em>ꢀ<em>a</em>ꢁ ◦ <em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3428em;">2</sup><em>, ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3428em;">2 </sup>◦ <em>ψ</em><sub style="top: 0.2453em;"><em>i</em></sub><sup style="top: -0.3428em;">1 </sup>∈ <em>L</em>ꢀ<em>A</em>ꢁ </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us