Discrete Structures I – Combinatorics

Discrete Structures I – Combinatorics

Discrete Structures I – Combinatorics Lectures by Prof. Dr. Stefan Felsner Notes taken by Elisa Haubenreißer Summer term 2011 2 Contents 1 Introductory Examples 5 1.1 Derangements..................................... .. 5 1.2 TheOfficersProblem.................................. 9 2 Basic Counting 13 n 2.1 Models for k ...................................... 14 2.2 Extending binomial coefficients . ... 15 3 Fibonacci Numbers 17 3.1 Models for F -numbers .................................. 18 3.2 FormulasforFibonacciNumbers . .... 19 3.3 The -numberSystem.................................. 21 F 3.4 ContinuedFractionsandContinuants . ..... 22 4 The Twelvefold Way 25 5 Formal Power Series 33 5.1 Bernoullinumbersandsummation . ... 34 5.2 Compositionofseries................................. .. 35 5.3 RootsofFPS ....................................... 36 5.4 CatalanNumbers.................................... 37 6 Solvinglinearrecurrencesviageneratingfunctions 39 6.1 How to compute spanning trees of Gn ......................... 40 6.2 An example with exponential generating function . ....... 42 7 q-Enumeration 43 7.1 Another model for the q-binomial............................ 47 8 Finite Sets And Posets 49 8.1 Posets–Partiallyorderedsets. ..... 50 8.2 Thediagramofaposet ................................ 51 8.3 k-intersecting families . 52 8.4 Shadows – Another prooffor Sperner’s theorem . ......... 53 8.5 Erd¨os-Ko-RadofromKruskal-Katona. ........ 55 8.6 Symmetric chain decompositions . ... 57 8.7 An application: Dedekinds problem . ... 60 9 Duality Theorems 63 9.1 Thematchingpolytope ................................ 67 3 4 CONTENTS 10 P´olya Theory – Counting With Symmetries 71 10.1 Permutationgroupsandthecycleindex . ...... 71 10.2 LemmaofCauchy–Frobenius–Burnside . ..... 73 11 Linear Extensions And Dimension Of Posets 79 11.1 Dimension of n ..................................... 81 11.22-dimensionalposetsB ............................... .... 82 11.3 Algorithms to find antichain partitions/chain partitions . ........ 83 11.4 2-dimensional picture for 2-dimensional posets . .......... 83 11.5 The Robinson-Shensted-Correspondence . .......... 84 11.6Viennot’sskeletons................................. ... 85 12 Design Theory 91 12.1 Construction of an S6(3, 5, 10).............................. 93 12.2 Construction of S(3, 4, 10)................................ 93 12.3 Necessary conditions for the existence of designs . .......... 94 12.4Steinertriplesystems ............................... ... 95 12.5 Construction of STS(15) ................................ 96 12.6Projectiveplanes .................................. ... 97 12.6.1 Constructing projective planes . ... 97 12.7 Fisher’s inequality . 98 13 Inversions And Involutions 99 13.1M¨obiusinversion ................................... .. 99 13.2TheZeta-function ................................. 100 13.3 The M¨obius function of P ................................ 101 13.4Involutions ....................................... 104 13.5 LemmaofLindstr¨omGessel-Viennot . ...... 106 14 Catalan-Numbers 109 14.15morefamilies ...................................... 111 14.2 The reflection principle . 114 14.3Thecyclelemma ..................................... 115 14.4 A bijection for family (l) and a count via 13.5.1 . .. 115 14.5 BijectionbetweenNarayananumbers. ....... 116 14.6 Structure on Catalan families . .. 117 14.7Tamarilattice..................................... 119 A Practice Sheets 121 Chapter 1 Introductory Examples 1.1 Derangements Definition (permutation). A permutation is a bijection from a finite set X into itself. [n] := 1,...,n is the generic set of cardinality n. The set of permutations of the generic set of { } cardinality n is called Sn. Sn has some properties that we want to keep in mind: S has group structure • n S = n! • | n| two line notation for π S : • ∈ n 1 2 ... n π = π(1) π(2) ... π(n) Example. 1234567 π = 4352761 Definition (derangement). A derangement is a permutation without fixed points, i. e. π Sn with π(i) = i i [n]. The set of derangements in S is called D . ∈ 6 ∀ ∈ n n Problem (Montmort, 1708). How many derangements of n letters exist? Let d(n) be this number. We will list some possible answers for Montmorts problem and prove 5 6 CHAPTER 1. INTRODUCTORY EXAMPLES them later on. n 12345 6 7 (values) d(n) 0 1 2 9 44 265 1858 d(n) = (n 1) (d(n 1)+ d(n 2)) (recursion1) − − − n n n!= d(k) (recursion2) k k=0 nX n d(n)= ( 1)n+kk! (summation) k − kX=0 n! n! 1 d(n)= = + (explicit) e e 2 nn d(n) √2πn cn log n (asymptotic) ∼ en+1 ∼ d(n) e z zn = − (generating function) n! 1 z n 0 X≥ − For the table of values and more information have a look at the encyclopedia of integer sequences1. Proof. recursion 1 (proof by bijection) Let π D . ∈ n 1 2 3 ... x ... n 1 n π = n− y Now we construct a shorter permutation by shrinking column x: 1 2 3 ... x ... n 1 π = 0 y − If x = y then it follows that π0 Dn 1 else we remove the fixed point x and compactify the 6 ∈ − permutation to an even shorter permutation π00 and it therefore is π00 Dn 2. ∈ − Example. 1234 5 678910 π = 4713102896 5 123456789 π = 0 471352896 12345678 π00 = (compactification) 46132785 Claim 1.1.1. Every element of Dn 1 Dn 2 is exactly (n 1) times in the image of this map. − ∪ − − x Proof. Case 1: π0 Dn 1. Choose a column ((n 1) possibilities) and break it for n. We ∈ − y − ... x ... n obtain ... n ... y Case 2: π00 Dn 2. Choose b [n 1] and make a permutation π00 by increasing all elements ∈ − ∈ − b (this permutes 1,...,b 1 b +1,...,n 1 ). Add the fixed point b to get π0. Use b for ≥ { − }∪{ − } the column involving n. e 1http://oeis.org 1.1. DERANGEMENTS 7 Bijection: Dn [n 1] Dn 1 [n 1] Dn 2 ←→ − × − ∪ − × − (c, π ) c column π 0 ←→ (b, π00) b break element Proof of recursion 2. π S Fix(π)= i π(i)= i [n] ∈ n ⇒ { | }⊆ π ”is” (i. e. induces) a fixed point free permutation on [n] Fix(π). It follows: \ π00 Der ([n] Fix(π)) ∈ \ We can now define a bijection between Sn and A [n] Der(A) which adds a fixed point to any ⊆ element of Sn or deletes fixed points and restricts the derangement. S Example (S3). 1 2 3 1 2 3 π = Der( ) π = Der ( 1, 2 ) 1 1 2 3 ∈ ∅ 2 2 1 3 ∈ { } 1 2 3 1 2 3 π = Der ( 2, 3 ) π = Der ( 1, 2, 3 ) 3 1 3 2 ∈ { } 4 2 3 1 ∈ { } 1 2 3 1 2 3 π = Der ( 1, 2, 3 ) π = Der ( 1, 3 ) 5 3 1 2 ∈ { } 6 3 2 1 ∈ { } Now we can see the following equation. n!= S | n| = Der(A) | | A [n] X⊆ = d ( A ) | | A [n] X⊆ n n = d(k) k kX=0 To get an explicit formula for d(n) we need an inversion formula, which is a simplified version of the M¨obius inversion formula. Ê Proposition 1.1.2. Let f,g : Æ . The following equivalence holds: −→ n n g(n)= ( 1)kf(k) f(n)= ( 1)kg(k) k − ⇔ k − Xk Xk The fundamental lemma helps us proof this proposition. Lemma 1.1.3. A 0 B = ( 1)| | = 6 ∅ − 1 B = A B ∅ X⊆ Proof of 1.1.3. We know that A even contributes a +1 and an uneven A contributes a 1, so we show that there are as many even| | as odd subsets of B. Choose b B. Then we can form− pairs of subsets by removing b if b A or by adding b if b / A, we call the∈ new set A b. Then one of the sets A and A b is even and∈ the other one is odd∈ so the cardinalities add up⊕ to 0. ⊕ 8 CHAPTER 1. INTRODUCTORY EXAMPLES Proof of 1.1.2. For notational convenience let f(A) := f ( A ) and g(A) := g ( A ). The proposition is equivalent to | | | | A B g(B)= ( 1)| |f(A) f(C)= ( 1)| |g(B) − ⇔ − A B B C X⊆ X⊆ We proof this by B B A ( 1)| |g(B)= ( 1)| | ( 1)| |f(A) − − − B C B C A B X⊆ X⊆ X⊆ A B = ( 1)| |f(A) ( 1)| | − − A C B:A B C X⊆ X⊆ ⊆ A A X = ( 1)| |f(A)( 1)| | ( 1)| | − − − A C X C A X⊆ ⊆X\ =0 unless A=C C C = f(C)( 1)| |( 1)| | (1.1.3) − − | {z } = f(C) Proof of summation. We define g(k) := ( 1)kd(k) and f(k) := k!. So because of recursion 2 we get − n n f(n)= ( 1)kg(k) g(n)= ( 1)kf(k) k − ⇒ k − X n X n d(n) = ( 1)ng(n)= ( 1)kf(k)= ( 1)n+kk! ⇒ − k − k − X X To proof the explicit version, you have to use the following formulas n n! = k k!(n k)! − zk ez = k! k 0 X≥ n! 1 = n!e− e 1 Together with some estimates for the speed of convergence of the series of e− you get the result. √ n n For the asymptotic formulas you have to use the Stirling approximation of n! 2πn e together with the explicit formula. ∼ Proof of generating function. We define a new function and consider its derivative. d(n) n d(n) n 1 D(z) := z D0(z)= z − n! (n 1)! n 0 n 1 X≥ X≥ − 1.2. THE OFFICERS PROBLEM 9 From recursion 1 we obtain d(n + 1) d(n) d(n 1) = − n! − (n 1)! (n 1)! − − d(n) n 1 n (1 z)D0(z)= (z − z ) ⇒ − (n 1)! − n 1 X≥ − d(n + 1) d(n) = + zn − n! (n 1)! n 1 X≥ − d(n 1) recursion 1 = − zn − (n 1)! n 1 X≥ − = zD(z) (1 z)D0(z)= zD(z) − ⇒ − − z e− The solution D(z)= 1 z can be verified by computation. − 1.2 The Officers Problem Problem (Euler, 1782). 36 officers from 6 different countries (c) inherit 6 different ranks (r) such that every combination (c, r) appears exactly once. Can they be arranged in an 6 6 array such that each c and each r appears in every row and every column? × First of all we generalize the problem to n2 objects with two types of attributes, each with n variants.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    135 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us