Debris from Giant Impacts, at Home and Abroad

Debris from Giant Impacts, at Home and Abroad

DEBRIS FROM GIANT IMPACTS, AT HOME AND ABROAD Alan Jackson Collaborators: Erik Asphaug (ASU), Andreas Reufer (Bern), Mark Wyatt (Cambridge) Image: NASA 2 OVERVIEW • Introduction to giant impacts and debris • Giant impact debris disks • Observing debris from terrestrial planet formation • The fraction of stars that form terrestrial planets • Characterising parameter space of giant impact debris INTRODUCTION • Chaotic growth via giant impacts is a key process in planet formation • Accretion is inefficient – large amounts of debris produced (typically 3-5%, Stewart & Leinhardt 2012) GIANT IMPACTS IN THE SOLAR SYSTEM • We have good evidence for individual giant impacts on • Earth (the Moon) • Mars (hemispheric dichotomy) • Mercury (lack of mantle) • Pluto-Charon • Haumea collisional family DEBRIS DISK • 1st orbit – clump • ~2-10 orbits – spiral • After ~10 orbits smooth asymmetric disk • Asymmetry lasts ~1000 orbits • Eventually precession symmetrises disc DEBRIS DISK • At large orbital radii asymmetry is long lived (~1 Myr at 50 AU) • Also more likely to be resolved • Large radii – asymmetry • Small radii – axisymmetric CANDIDATES • Beta Pictoris (Dent et al 2014) • HD 172555 (Johnson et al 2012) • ID8 (Meng et al 2014, see talk by Kate Su after coffee) THE MOON-FORMING IMPACT • Moon formation releases 1.3 lunar mass of debris (1.6%) • Model dynamical and collisional evolution • Debris sizes uncertain – two distributions: vapour (mm-size), boulders (100km-size) TERRESTRIAL PLANET FORMATION • Young stars are active • Detecting small planets by RV or transits very difficult • Young stars are dusty • Detecting small planets by direct imaging very difficult • Dust may be only way to access young terrestrial planets TERRESTRIAL PLANET FORMATION • A ‘Drake equation’ for terrestrial planet formation −1 퐹푇푃퐹 = 퐸퐼푅푊푇 퐷 • 퐸퐼푅=≈ fraction 0.3 of stars that display mid-IR excess at 10-100Myr • W =~ fraction0.25 of these in which dust is warm (>150K) • T =~ fraction1 of 10-100Myr period for which dust is detectable • D =≤ fraction1 of warm dust truly due to terrestrial planet formation TERRESTRIAL PLANET FORMATION • Best estimates give 퐹푇푃퐹 <~ 0.1 • Sub-Neptunes vs. Super-Earths? • If we want this to be higher we need to increase W or decrease T: • A lot of ‘hidden’ warm dust • Problems with terrestrial planet formation models • Fast formation/fewer giant impacts? • Issues with debris? CHARACTERISING DEBRIS • Debris release is a complex process • Studies so far have used isotropic release of debris CHARACTERISING DEBRIS • Database of >1500 SPH simulations of giant impacts • Characterise debris properties: mass, sprays, vapour, etc. SUMMARY • Giant impacts release large quantities of debris that forms detectable debris disks • Starting to see systems where giant impacts may have occurred • Debris may be the only way to study terrestrial planets during the epoch of formation • Still uncertainties and more work to do .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us