COMPLEX ANALYSIS: SOLUTIONS 5 1. Find the Poles and Residues Of

COMPLEX ANALYSIS: SOLUTIONS 5 1. Find the Poles and Residues Of

COMPLEX ANALYSIS: SOLUTIONS 5 1. Find the poles and residues of the following functions 1 1 π cot(πz) 1 ; ; ; (m; n 2 ) z4 + 5z2 + 6 (z2 − 1)2 z2 zm(1 − z)n Z>0 Solution: Throughout we use the following formula for calculating residues: If f(z) has a pole of order k at z = z0 then 1 dk−1 k res(f; z0) = k−1 (z − z0) f(z) : (k − 1)! dz z=z0 In particular, if f(z) has a simple pole at z0 then the residue is given by simply evaluating the non-polar part: (z −z0)f(z), at z = z0 (or by taking a limit if we have an indeterminate form). Let 1 1 1 f(z) := = = p p p p : z4 + 5z2 + 6 (z2 + 2)(z2 + 3) (z + i 2)(z − i 2)(z + i 3)(z − i 3) p p This has simple poles at z = ±i 2; ±i 3 with residues p p 1 1 1 res(f; i 2) = (z − i 2) p = p p = p ; z4 + 5z2 + 6 z=i 2 (z + i 2)(z2 + 3) z=i 2 2i 2 p p 1 1 res(f; −i 2) = (z + i 2) p = − p ; z4 + 5z2 + 6 z=−i 2 2i 2 p 1 res(f; i 3) = − p ; 2i 3 p 1 res(f; −i 3) = p : 2i 3 1 COMPLEX ANALYSIS: SOLUTIONS 5 2 For the second one let 1 1 f(z) = = : (z2 − 1)2 (z + 1)2(z − 1)2 This has double poles at ±1. From the formula we get d 1 res(f; 1) = = −1=4; dz (z + 1)2 z=1 d 1 res(f; −1) = = 1=4: dz (z − 1)2 z=−1 For the third let π cot(πz) f(z) = : z2 Now, cot(πz) has poles wherever sin(πz) = 0, so at z = n 2 Z. About these points we have (z − n)2 (z − n)3 sin(πz) = sin(πn) + π cos(πn)(z − n) − π2 sin(πn) − π3 cos(πn) + ··· 2! 3! (z − n)2 =(−1)nπ(z − n)1 − π2 + O((z − n)4) 3! and (z − n)2 (z − n)3 cos(πz) = cos(πn) − π sin(πn)(z − n) − π2 cos(πn) + π3 sin(πn) + ··· 2! 3! (z − n)2 =(−1)n1 − π2 + O((z − n)4): 2! Hence, for z close to n 2 Z, we have 1 − π2(z − n)2=2 + O((z − n)4) cot(πz) = π(z − n)1 − π2(z − n)2=6 + O((z − n)4) 1 − π2(z − n)2=2 + O((z − n)4) = 1 + π2(z − n)2=6 + O((z − n)4) π(z − n) 1 π = − (z − n) + O((z − n)3) π(z − n) 3 Therefore, f(z) = π cot(πz)=z2 has simple poles at z = n 6= 0 and a triple pole at z = 0. For the simple poles we have π cot(πz) 1 res(f; n) = (z − n) 2 = 2 : z z=n n COMPLEX ANALYSIS: SOLUTIONS 5 3 For the triple pole at at z = 0 we have 1 π2 1 f(z) = − + O(z) z3 3 z so the residue is −π2=3. Finally, the function 1 f(z) = zm(1 − z)n has a pole of order m at z = 0 and a pole of order n at z = 1. From the formula for residues we have m−1 1 d 1 res(f; 0) = m−1 n (m − 1)! dz (1 − z) z=0 n(n + 1) ··· (n + m − 2) = (m − 1)! (n + m − 2)! = (n − 1)!(m − 1)! and n−1 n 1 d (−1) res(f; 1) = n−1 m (n − 1)! dz z z=1 −m(m + 1) ··· (m + n − 2) = (n − 1)! (m + n − 2)! = − (m − 1)!(n − 1)! = − res(f; 0): 2. Use the substitution eiθ = z along with the residue theorem to show that Z 2π dθ 2π = p : 0 2 + cos θ 3 Solution: As suggested we let eiθ = z so that dθ = dz=(iz) and the integral becomes 1 Z dz 2 Z dz −1 = 2 : i jzj=1 z(2 + (z + z )=2) i jzj=1 z + 4z + 1 p 2 Now z + 4z + 1 has zeros of order 1 at z = z± = −2 ± 3 and so the integrand has simple poles at z+ and z−. Only z+ lies in the unit disk and therefore by the residue COMPLEX ANALYSIS: SOLUTIONS 5 4 theorem 2 Z dz 2 1 2 = × 2πi × res 2 ; z+ i jzj=1 z + 4z + 1 i z + 4z + 1 1 =4π(z − z+) z2 + 4z + 1 z=z+ 1 =4π(z − z+) (z − z )(z − z ) + − z=z+ 1 =4π z+ − z− 1 =4π p 2 3 2π =p : 3 3. Evaluate the following integrals via residues. Show all estimates. (i) Z 1 x2 4 2 dx 0 x + 5x + 6 (ii) Z 1 x sin x 2 2 dx; a real 0 x + a (iii) Z 1 log x 2 dx 0 1 + x Solution: (i) Since the integrand is an even function the integral in question is equal to I=2 where Z 1 x2 I = 4 2 dx: −∞ x + 5x + 6 p p As a function of a complex variable, the integrand has simple poles at ±i 2, ±i 3. We will be considering a semicircularp p contour in the upper half plane so we only need calculate the residues at z = i 2; i 3. A slight modification of the first calculation in question 1 gives p p z2 p (i 2)2 i 2 res ; i 2 = p = z4 + 5z2 + 6 2i 2 2 COMPLEX ANALYSIS: SOLUTIONS 5 5 and p p z2 p (i 3)2 i 3 res ; i 3 = − p = − : z4 + 5z2 + 6 2i 3 2 Now, Consider the semicircular contour ΓR, which starts at R, traces a semicircle in the upper half plane to −R and then travels back to R along the real axis. Then, on taking R large enough, by the residue theorem p p Z z2 X i 2 i 3 p p 4 2 dz = 2πi× residues inside ΓR = 2πi( − ) = π( 3− 2): ΓR z + 5z + 6 2 2 On the other hand Z z2 Z z2 lim dz = I + lim dz R!1 4 2 R!1 4 2 ΓR z + 5z + 6 γR z + 5z + 6 where γR is the semicircle in the upper half plane. But by the Estimation Lemma Z z2 z2 1 4 2 dz 6 πR max 4 2 ! 0 z2γR γR z + 5z + 6 z + 5z + 6 R p p as R ! 1. Hence, I = π( 3 − 2) and so Z 1 x2 π p p 4 2 dx = ( 3 − 2): 0 x + 5x + 6 2 The last estimate in the inequality for the integral over γR should be clear since the dominant term is the z4 term in the denominator, but for completeness: z2 π 1 πR max 4 2 = max −2 −4 z2γR z + 5z + 6 R z2γR 1 + 5z + 6z π 1 6 max −2 −4 R z2γR 1 − 5jzj − 6jzj π 1 = R 1 − 5R−2 − 6R−4 where we have used jz + wj > jzj − jwj in the second line. On taking R > 5, say, this is 6 2π=R and the constant 2π is absorbed into the symbol. (ii). We have Z 1 x sin x 1 Z 1 x sin x 1 Z 1 xeix 2 2 dx = 2 2 dx = = 2 2 dx : 0 x + a 2 −∞ x + a 2 −∞ x + a Denote this last integral by J. Again, we will consider J as the horizontal section of the contour ΓR from part (i). COMPLEX ANALYSIS: SOLUTIONS 5 6 In the upper half plane the integrand has a simple pole at z = ia with residue iz iz −a −a ze ze iae e res 2 2 ; ia = (z − ia) 2 2 = = : z + a z + a z=ia 2ia 2 Hence, by the residue theorem Z zeiz Z zeiz πie−a = lim dz = J + lim dz: R!1 2 2 R!1 2 2 ΓR z + a γR z + a Thus it remains to show that this last integral vanishes in the limit. This is similar to question 7 (ii) of Problems 3; a trivial estimate of the integrand is 1=R which is not enough for the Estimation Lemma. Instead we apply integration by parts which is probably the quickest way (see Problems 3). Integrating eiz and differentiating the rest gives Z iz iz −R Z 2 ze ze 1 1 2z iz 2 2 dz = 2 2 − 2 2 − 2 2 2 e dz: γR z + a i(z + a ) R i γR z + a (z + a ) The first term on the right is −2R cos R=i(R2 + a2) 1=R. For the integrals we use the Estimation Lemma to give Z iz iz e e 1 1 2 2 dz 6 πR max 2 2 6 πR 2 2 ; z2γR γR z + a z + a R − a R Z 2 iz 2 iz z e z e 3 1 1 2 2 2 dz 6 πR max 2 2 2 6 πR 2 2 2 ; z2γR γR (z + a ) (z + a ) (R − a ) R as R ! 1. Hence, J = πie−a and so Z 1 x sin x 1 π −a 2 2 dx = =(J) = e : 0 x + a 2 2 (iii) This is quite hard and, as I discovered recently, the solution is in Conway's book anyway (pg.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us