
<p>World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering <br>Vol:13, No:8, 2019 </p><p>Fast and Efficient Algorithms for Evaluating <br>Uniform and Nonuniform Lagrange and Newton <br>Curves </p><p>Taweechai Nuntawisuttiwong, Natasha Dejdumrong </p><p>Abstract—Newton-Lagrange Interpolations are widely used in quadratic computation time, which is slower than the others. </p><p>numerical analysis. However, it requires a quadratic computational </p><p>However, there are some curves in CAGD, Wang-Ball, DP </p><p>time for their constructions. In computer aided geometric design </p><p>and Dejdumrong curves with linear complexity. In order to </p><p>(CAGD), there are some polynomial curves: Wang-Ball, DP and </p><p>reduce their computational time, Be´zier curve is converted into any of Wang-Ball, DP and Dejdumrong curves. Hence, </p><p>Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and the computational time for Newton-Lagrange interpolations Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong </p><p>can be reduced by converting them into Wang-Ball, DP and </p><p>algorithms, first, it is necessary to convert Newton-Lagrange </p><p>Dejdumrong algorithms. Thus, it is necessary to investigate </p><p>polynomials into Wang-Ball, DP or Dejdumrong polynomials. In </p><p>the conversion from Newton-Lagrange interpolation into the curves with linear complexity, Wang-Ball, DP and </p><p>this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational Dejdumrong curves. An application of this work is to modify time for representing Newton-Lagrange polynomials can be reduced </p><p>sketched image in CAD application with the computational </p><p>into linear complexity. In addition, the other utilizations of using </p><p>time reduction for plotting Newton-Lagrange curves. </p><p>CAGD curves to modify the Newton-Lagrange curves can be taken. <br>Keywords—Newton interpolation, Lagrange interpolation, linear </p><p>II. NEWTON & LAGRANGE POLYNOMIALS </p><p>complexity. </p><p>Although Newton and Lagrange polynomials are different representations, their simple forms are the same polynomials. </p><p>I. INTRODUCTION </p><p>Newton applies Divided Difference method to represent its <br>HERE are many interpolation methods used in numerical polynomial while Lagrange uses simpler formula. At the </p><p>analysis. The popular one is Newton’s divided-difference </p><p>T</p><p>beginning, it is important to introduce both methods. Newton interpolating polynomial. The Newton’s method was given by and Lagrange polynomials can be shown as follows: </p><p>Isaac Newton written in Lemma 5 of Book III of his Principia </p><p>Mathematica of 1687 [1] but it was known to him before </p><p>A. Newton Polynomial </p><p>from the letter he wrote to Oldenburg [2]. The simple forms <br>Let N(t) be the Newton polynomial of control points, of Newton interpolating polynomials, Lagrange interpolations, </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">{<strong>b</strong><sub style="top: 0.1208em;">i</sub>}<sub style="top: 0.2099em;">i=0</sub>, and the weight, {t<sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, then </li><li style="flex:1">were published by Joseph-Louis Lagrange under his name. </li></ul><p></p><p>However, the same formula had been produced by Waring sixteen years earlier. </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">i</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>N(t) = </p><p>f[t<sub style="top: 0.1211em;">i</sub>, t<sub style="top: 0.1211em;">i−1</sub>, .., t<sub style="top: 0.1211em;">0</sub>] <br>(t − t<sub style="top: 0.1211em;">j</sub>), tꢀ[t<sub style="top: 0.1211em;">0</sub>, t<sub style="top: 0.1211em;">n</sub>] (1) </p><p>Newton-Lagrange interpolations can be beneficial to estimate intermediate data between precise data points or to predict the future data. In addition, Newton-Lagrange interpolations can be used to vectorize a raster-image into a vector image. However, a quadratic computational time, O(n<sup style="top: -0.2933em;">2</sup>), must be taken to construct a Newton-Lagrange interpolation. <br>In computer aided geometric design (CAGD), there are many polynomial curves, e.g. Be´zier [3], Said-Ball [4], Wang-Ball [5], DP [6], NB1 [7], [8] and Dejdumrong [9] curves. The difference between Newton-Lagrange and CAGD curves is the utilization of CAGD curves that is for CAD/CAM modeling. In CAGD curves, Be´zier curves are widely used in CAD software because they are better in shape preserving and possess simple forms. Unfortunately, Be´zier curve has a </p><p></p><ul style="display: flex;"><li style="flex:1">i=0 </li><li style="flex:1">j=0 </li></ul><p></p><p>where </p><p>f[t<sub style="top: 0.1211em;">i</sub>, t<sub style="top: 0.1211em;">i−1</sub>, .., t<sub style="top: 0.1211em;">k+1</sub>] − f[t<sub style="top: 0.1211em;">i−1</sub>, t<sub style="top: 0.1211em;">i−2</sub>, .., t<sub style="top: 0.1211em;">k</sub>] </p><ul style="display: flex;"><li style="flex:1">f[t<sub style="top: 0.1212em;">i</sub>, t<sub style="top: 0.1212em;">i−1</sub>, .., t<sub style="top: 0.1212em;">k</sub>] = </li><li style="flex:1">,</li></ul><p></p><p>t<sub style="top: 0.1211em;">i </sub>− t<sub style="top: 0.1211em;">k </sub></p><p>(2) and </p><p>f[t<sub style="top: 0.1211em;">i</sub>] = <strong>b</strong><sub style="top: 0.1211em;">i</sub>. </p><p>(3) </p><p>B. Lagrange Polynomial </p><p>Let L(t) be the Lagrange polynomial of control points, </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>{<strong>v</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, and the weight, {t<sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2102em;">i=0</sub>, then </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>t − t<sub style="top: 0.121em;">j </sub></p><p>L(t) = </p><p><strong>v</strong><sub style="top: 0.121em;">i </sub></p><p>, tꢀ[t<sub style="top: 0.121em;">0</sub>, t<sub style="top: 0.121em;">n</sub>]. </p><p>(4) </p><p>t<sub style="top: 0.1211em;">i </sub>− t<sub style="top: 0.1211em;">j </sub></p><p>i=0 </p><p></p><ul style="display: flex;"><li style="flex:1">j=0,j </li><li style="flex:1">ꢀ=i </li></ul><p></p><p>T. Nuntawisuttiwong and N. Dejdumrong are with the Department of Computer Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand (e-mail: [email protected], [email protected]). </p><p>In CAGD curves, there exists the power basis form for representing curves. In this work, the power basis </p><p></p><ul style="display: flex;"><li style="flex:1">International Scholarly and Scientific Research & Innovation 13(8) 2019 </li><li style="flex:1">448 </li><li style="flex:1">ISNI:0000000091950263 </li></ul><p>World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering <br>Vol:13, No:8, 2019 </p><p>representations for Newton and Lagrange polynomial are O(n). Thus, the computational time can also be reduced by investigated. Thus, Newton and Lagrange polynomial can be using the conversion from Newton-Lagrange polynomials into </p><ul style="display: flex;"><li style="flex:1">computed by the following definition. </li><li style="flex:1">Wang-Ball, DP or Dejdumrong curves. </li></ul><p></p><p>Definition 1. Newton-Lagrange Power Basis: Let N(t) and L(t) be Newton and Lagrange polynomial with their control </p><p>III. CONVERSION FROM UNIFORM NEWTON-LAGRANGE <br>POLYNOMIALS INTO CAGD CURVE </p><p>n</p><p>points, {<strong>b</strong><sub style="top: 0.1209em;">i</sub>}<sub style="top: 0.2102em;">i=0</sub>. Newton and Lagrange polynomial can be represented by using power basis as follows: </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>A. Conversion from Uniform Newton-Lagrange Curve into <br>Wang-Ball Curve </p><p>ꢀ ꢀ </p><p>N(t) = L(t) = </p><p><strong>b</strong><sub style="top: 0.121em;">i </sub>· f<sub style="top: 0.121em;">i,j </sub>· t<sup style="top: -0.3333em;">i</sup>, </p><p>(5) (6) </p><p>i=0 j=0 </p><p>n</p><p>Wang-Ball control points, {<strong>p</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, can be obtained from </p><p>where f<sub style="top: 0.1211em;">i,j </sub>is Newton-Lagrange power basis defined by </p><p>n</p><p>Newton control points, {<strong>b</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, and Lagrange control points, </p><p>nn</p><p>{<strong>v</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, as follows: </p><p>F</p><p><sub style="top: 0.2101em;">i,n−j</sub>(0) </p><p>ꢂ</p><p>f<sub style="top: 0.1211em;">i,j </sub></p><p>=</p><p>ni=0,i </p><p><sub style="top: 0.2421em;">=j </sub>t<sub style="top: 0.1211em;">j </sub>− t<sub style="top: 0.1211em;">i </sub></p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢄ</li></ul><p></p><p>ꢀ</p><p><strong>p</strong><sub style="top: 0.1211em;">0 </sub><strong>p</strong><sub style="top: 0.1211em;">1 </sub>· · · <strong>p</strong><sub style="top: 0.1211em;">n </sub></p><p>=</p><p><strong>b</strong><sub style="top: 0.1211em;">0 </sub><strong>b</strong><sub style="top: 0.1211em;">1 </sub>· · · <strong>b</strong><sub style="top: 0.1211em;">n </sub>· <strong>A</strong><sup style="top: -0.3332em;">−1 </sup></p><p>and </p><p>(12) </p><p>⎧⎨</p><p>and </p><p><strong>p</strong><sub style="top: 0.121em;">0 </sub><strong>p</strong><sub style="top: 0.121em;">1 </sub>· · · <strong>p</strong><sub style="top: 0.121em;">n </sub></p><p>1</p><p>,,</p><p>for j = 0, </p><p>n</p><p>F</p><p><sub style="top: 0.1996em;">i,n−j</sub>(u) = </p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢄ</li></ul><p>ꢃ</p><p>=</p><p><strong>v</strong><sub style="top: 0.121em;">0 </sub><strong>v</strong><sub style="top: 0.121em;">1 </sub>· · · <strong>v</strong><sub style="top: 0.121em;">n </sub>·<strong>A</strong><sup style="top: -0.3332em;">−1 </sup>(13) </p><p>⎩</p><p>n−j+1 </p><p>n</p><p><sub style="top: 0.2421em;">=i </sub>F<sub style="top: 0.2102em;">i,j−1</sub>(k + 1)t<sub style="top: 0.1211em;">k </sub></p><p>for j > 0. </p><p>(7) </p><p>k=u,k </p><p>ꢀ</p><p>where </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p>Definition 2. Newton-Lagrange Monomial Matrices: Newton and Lagrange polynomials can be represented by using monomial matrix forms as follows: </p><p><strong>a</strong><sub style="top: 0.121em;">0,0 </sub><strong>a</strong><sub style="top: 0.121em;">0,1 </sub>. . . <strong>a</strong><sub style="top: 0.121em;">0,n </sub><strong>a</strong><sub style="top: 0.1211em;">1,0 </sub><strong>a</strong><sub style="top: 0.1211em;">1,1 </sub>. . . <strong>a</strong><sub style="top: 0.1211em;">1,n </sub></p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦</p><p><strong>A </strong>= </p><p>(14) <br>...<br>...<br>...<br>.<br>.</p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p>.</p><p>1</p><p>t</p><p><strong>a</strong><sub style="top: 0.121em;">n,0 </sub><strong>a</strong><sub style="top: 0.121em;">n,1 </sub>. . . <strong>a</strong><sub style="top: 0.121em;">n,n </sub></p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦<br>ꢄ</p><p>N(t) = L(t) = <strong>b</strong><sub style="top: 0.1209em;">0 </sub><strong>b</strong><sub style="top: 0.121em;">1 </sub>· · · <strong>b</strong><sub style="top: 0.121em;">n </sub>· <strong>M </strong>· </p><p>(8) </p><p>...</p><p>and </p><p>t<sup style="top: -0.2931em;">n </sup></p><p>ꢅ ꢆ <br>⎧</p><p>⎪</p><p>n</p><p>2</p><p>(2t<sub style="top: 0.1215em;">j</sub>)<sup style="top: -0.2925em;">i</sup>(1 − t<sub style="top: 0.1215em;">j</sub>)<sup style="top: -0.2925em;">i+2 </sup></p><p>,,,,</p><p>for 0 ≤ i ≤ </p><p>n</p><p>for i = </p><p>2</p><p>− 1 </p><p>⎪⎪</p><p>where <strong>M </strong>is Newton-Lagrange monomial matrix defined as </p><p>⎪⎪⎪⎪<br>ꢅ ꢆ </p><p>in−i </p><p>follows: </p><p>⎪ (2t<sub style="top: 0.1228em;">j</sub>) (1 − t<sub style="top: 0.1228em;">j</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p>⎪⎨</p><p>f<sub style="top: 0.1211em;">0,0 </sub>f<sub style="top: 0.121em;">0,1 </sub>. . . f<sub style="top: 0.121em;">0,n </sub>f<sub style="top: 0.1211em;">1,0 </sub>f<sub style="top: 0.1211em;">1,1 </sub>. . . f<sub style="top: 0.1211em;">1,n </sub></p><p><strong>a</strong><sup style="top: -0.3333em;">n</sup><sub style="top: 0.1995em;">i,j</sub>(t) = </p><p>ꢇ ꢈ <br>⎢⎢⎢⎣<br>⎥⎥⎥⎦</p><p>n</p><p>for i = </p><p>2</p><p>(2(1 − t<sub style="top: 0.1211em;">j</sub>))<sup style="top: -0.2928em;">n−i</sup>(t<sub style="top: 0.1211em;">j</sub>)<sup style="top: -0.2928em;">i </sup></p><p>⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩</p><p><strong>M </strong>= </p><p>.</p><p>(9) </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li></ul><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li></ul><p>.</p><p>ꢇ ꢈ </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li></ul><p></p><p>n</p><p><strong>a</strong><sup style="top: -0.2929em;">n</sup><sub style="top: 0.2101em;">n−i,j</sub>(1 − t<sub style="top: 0.1211em;">j</sub>) </p><p>for <br>+ 1 ≤ i ≤ n </p><p>2</p><p>f<sub style="top: 0.1209em;">n,0 </sub>f<sub style="top: 0.1211em;">n,1 </sub>. . . f<sub style="top: 0.1211em;">n,n </sub></p><p></p><ul style="display: flex;"><li style="flex:1">(15) </li><li style="flex:1">The matrix inverse of Newton-Lagrange monomial matrix </li></ul><p>can be expressed as follows: </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p>−1 </p><p>f<sub style="top: 0.1212em;">0,0 </sub>f<sub style="top: 0.1211em;">0,1 </sub>. . . f<sub style="top: 0.1211em;">0,n </sub>f<sub style="top: 0.121em;">1,0 </sub>f<sub style="top: 0.121em;">1,1 </sub>. . . f<sub style="top: 0.121em;">1,n </sub></p><p>B. Conversion from Uniform Newton-Lagrange Curve into <br>DP Curve </p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦</p><p><strong>M</strong><sup style="top: -0.2929em;">−1 </sup></p><p>==</p><p>...<br>...<br>...<br>.<br>.<br>.</p><p>n</p><p>DP control points, {<strong>q</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, can be obtained from Newton </p><p>f<sub style="top: 0.1211em;">n,0 </sub>f<sub style="top: 0.1211em;">n,1 </sub>. . . f<sub style="top: 0.1211em;">n,n </sub></p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">control points, {<strong>b</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, and Lagrange control points, {<strong>v</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0 </sub></li><li style="flex:1">,</li></ul><p>(10) </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p>as follows: </p><p><strong>g</strong><sub style="top: 0.1211em;">0,0 </sub><strong>g</strong><sub style="top: 0.1211em;">0,1 </sub>. . . <strong>g</strong><sub style="top: 0.1211em;">0,n </sub><strong>g</strong><sub style="top: 0.121em;">1,0 </sub><strong>g</strong><sub style="top: 0.121em;">1,1 </sub>. . . <strong>g</strong><sub style="top: 0.121em;">1,n </sub></p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦<br>ꢄꢄ<br>ꢄ</p><p><strong>q</strong><sub style="top: 0.121em;">0 </sub><strong>q</strong><sub style="top: 0.1211em;">1 </sub>· · · <strong>q</strong><sub style="top: 0.1211em;">n </sub></p><p>==</p><p><strong>b</strong><sub style="top: 0.1211em;">0 </sub><strong>b</strong><sub style="top: 0.1211em;">1 </sub>· · · <strong>b</strong><sub style="top: 0.1211em;">n </sub>·<strong>C</strong><sup style="top: -0.3332em;">−1 </sup>(16) </p><p>,</p><p>...<br>...<br>...<br>.<br>.<br>.</p><p><strong>g</strong><sub style="top: 0.1207em;">n,0 </sub><strong>g</strong><sub style="top: 0.1211em;">n,1 </sub>. . . <strong>g</strong><sub style="top: 0.1211em;">n,n </sub></p><p>and </p><p>ꢄ</p><p>where </p><p>⎧</p><p><strong>q</strong><sub style="top: 0.1212em;">0 </sub><strong>q</strong><sub style="top: 0.1212em;">1 </sub>· · · <strong>q</strong><sub style="top: 0.1212em;">n </sub><strong>v</strong><sub style="top: 0.1212em;">0 </sub><strong>v</strong><sub style="top: 0.1212em;">1 </sub>· · · <strong>v</strong><sub style="top: 0.1212em;">n </sub>·<strong>C</strong><sup style="top: -0.3333em;">−1 </sup>(17) </p><p>1</p><p>,,</p><p>for i = 0, </p><p>⎨⎩</p><p><strong>g</strong><sub style="top: 0.1211em;">i,j </sub></p><p>=</p><p>(11) </p><p>t<sub style="top: 0.21em;">j</sub><sup style="top: -0.293em;">i </sup></p><p>for i > 0. </p><p>where </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p><strong>c</strong><sub style="top: 0.1212em;">0,0 </sub><strong>c</strong><sub style="top: 0.1211em;">0,1 </sub>. . . <strong>c</strong><sub style="top: 0.1211em;">0,n </sub><strong>c</strong><sub style="top: 0.1211em;">1,0 </sub><strong>c</strong><sub style="top: 0.1211em;">1,1 </sub>. . . <strong>c</strong><sub style="top: 0.1211em;">1,n </sub></p><p>...<br>Newton and Lagrange polynomial are very useful for polynomial interpolation. However, they take a lot of computational time, O(n<sup style="top: -0.2931em;">2</sup>). In CAGD curves, Wang-Ball, DP and Dejdumrong curves consume linear computational time, </p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦</p><p><strong>C </strong>= </p><p>(18) <br>...<br>...<br>.<br>.<br>.</p><p><strong>c</strong><sub style="top: 0.1212em;">n,0 </sub><strong>c</strong><sub style="top: 0.1212em;">n,1 </sub>. . . <strong>c</strong><sub style="top: 0.1212em;">n,n </sub></p><p></p><ul style="display: flex;"><li style="flex:1">International Scholarly and Scientific Research & Innovation 13(8) 2019 </li><li style="flex:1">449 </li><li style="flex:1">ISNI:0000000091950263 </li></ul><p>World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering <br>Vol:13, No:8, 2019 </p><p>and </p><p>IV. CONVERSION FROM NONUNIFORM NEWTON-LAGRANGE INTO CAGD CURVES </p><p>⎧</p><p>(−1)<sup style="top: -0.2923em;">n−i</sup>(1 − t<sub style="top: 0.1211em;">j</sub>)<sup style="top: -0.2929em;">n </sup>(−1)<sup style="top: -0.293em;">n−i</sup>(1 − t<sub style="top: 0.121em;">j</sub>)<sup style="top: -0.293em;">n−i</sup>t<sub style="top: 0.121em;">j </sub><br>, for i = 0 </p><p>⎪⎪⎪⎪</p><p>A. Conversion from Nonuniform Newton-Lagrange curve into Nonuniform Wang-Ball curve </p><p>⎪⎪⎪⎪⎪⎪</p><p>, for 0 < i ≤ </p><p>ꢅ ꢆ </p><p>n</p><p>⎪⎪⎪⎪</p><p>− 1 </p><p>2</p><p>n</p><p>Wang-Ball control points, {<strong>p</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, can be transformed from </p><p>⎪⎪⎪⎪</p><p>n</p><p>Newton control points, {<strong>b</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, and Lagrange control points, </p><p>⎪ (−1)<sup style="top: -0.2929em;">n−i</sup>(n − 2i)(1 − t<sub style="top: 0.1211em;">j</sub>)<sup style="top: -0.2929em;">i+1</sup>t<sub style="top: 0.1211em;">j</sub>+ </p><p>⎪⎪</p><p>n</p><p>⎪</p><p>n</p><p>2</p><p>{<strong>v</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, as follows: </p><p></p><ul style="display: flex;"><li style="flex:1">⎪</li><li style="flex:1">ꢅ ꢆ </li></ul><p></p><p>n</p><p>2</p><p>n</p><p>2</p><p>+1 </p><p>ꢂ ꢃ </p><p>⎪⎪⎪⎪⎪⎪⎪⎨</p><p>−</p><p>n</p><p>1</p><p>n</p><p>, for i = </p><p>2</p><p>ꢀ ꢁ ꢂ ꢃ </p><p></p><ul style="display: flex;"><li style="flex:1">(<sub style="top: 0.2783em;">2 </sub>) </li><li style="flex:1">(1 − t<sub style="top: 0.225em;">j </sub></li><li style="flex:1">+</li></ul><p></p><p>ꢄꢄ<br>ꢄ</p><p><strong>b</strong><sub style="top: 0.121em;">0 </sub><strong>b</strong><sub style="top: 0.121em;">1 </sub>· · · <strong>b</strong><sub style="top: 0.121em;">n </sub>·A<sup style="top: -0.3333em;">−1 </sup>(24) </p><p>n</p><p>+1 </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ ꢃ </li><li style="flex:1">ꢂ ꢃ </li></ul><p></p><p><strong>p</strong><sub style="top: 0.121em;">0 </sub><strong>p</strong><sub style="top: 0.121em;">1 </sub>· · · <strong>p</strong><sub style="top: 0.121em;">n </sub></p><p>==</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">(−1) </li><li style="flex:1">(1 − t<sub style="top: 0.1211em;">j</sub>) </li><li style="flex:1">)</li></ul><p></p><p><strong>c</strong><sup style="top: -0.3333em;">n</sup><sub style="top: 0.1995em;">i,j</sub>(t) = </p><p>and </p><p>⎪</p><p>t<sub style="top: 0.0807em;">j </sub>−a </p><p></p><ul style="display: flex;"><li style="flex:1">(n − 2i)(<sup style="top: -0.4094em;">t</sup><sub style="top: 0.2783em;">b−</sub><sup style="top: -0.4094em;">−</sup><sub style="top: 0.2783em;">a</sub><sup style="top: -0.4094em;">b </sup>)( </li><li style="flex:1">)</li><li style="flex:1">+</li></ul><p></p><p>+1 </p><p>j</p><p>n−i+1 </p><p>⎪⎪⎪⎪⎪⎪⎪⎪</p><p>b−a </p><p>ꢄ<br>ꢇ ꢈ </p><p>n</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>2</p><p>t<sub style="top: 0.0807em;">j </sub>−a </p><p><strong>v</strong><sub style="top: 0.121em;">0 </sub><strong>v</strong><sub style="top: 0.121em;">1 </sub>· · · <strong>v</strong><sub style="top: 0.121em;">n </sub>·A<sup style="top: -0.3333em;">−1 </sup>(25) </p><p>−</p><p>1</p><p>n</p><p>, for i = </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ ꢁ ꢂ ꢃ </li><li style="flex:1">ꢂ ꢃ </li></ul><p></p><p>2</p><p><strong>p</strong><sub style="top: 0.1209em;">0 </sub><strong>p</strong><sub style="top: 0.121em;">1 </sub>· · · <strong>p</strong><sub style="top: 0.121em;">n </sub></p><p>(<sub style="top: 0.2784em;">2 </sub>) <br>(1 − ( <sub style="top: 0.2784em;">b−a </sub></p><ul style="display: flex;"><li style="flex:1">)</li><li style="flex:1">+</li></ul><p></p><p>⎪⎪⎪⎪</p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>+1 </p><p>ꢂ ꢃ </p><p>2</p><p>ꢂ ꢃ </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">(−1) </li><li style="flex:1">(1 − t<sub style="top: 0.121em;">j</sub>) </li><li style="flex:1">)</li></ul><p></p><p>⎪⎪⎪</p><p>where </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p>⎪⎪⎪<br>ꢇ ꢈ </p><p>a<sub style="top: 0.1211em;">0,0 </sub>a<sub style="top: 0.1211em;">0,1 </sub>. . . a<sub style="top: 0.1211em;">0,n </sub>a<sub style="top: 0.1211em;">1,0 </sub>a<sub style="top: 0.1211em;">1,1 </sub>. . . a<sub style="top: 0.1211em;">1,n </sub></p><p>...</p><p>n</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">(−1)(1 − t<sub style="top: 0.1211em;">j</sub>)t<sup style="top: -0.2929em;">i</sup><sub style="top: 0.2101em;">j </sub></li><li style="flex:1">, for </li><li style="flex:1">+ 1 </li></ul><p></p><p>⎪⎪</p><ul style="display: flex;"><li style="flex:1">⎪</li><li style="flex:1">⎢</li></ul><p>⎢⎢⎣<br>⎥⎥⎥⎦<br>⎪⎪⎪⎪⎪⎪⎪</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages5 Page
-
File Size-