Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform

Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform

<p>World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering <br>Vol:13, No:8, 2019 </p><p>Fast and Efficient Algorithms for Evaluating <br>Uniform and Nonuniform Lagrange and Newton <br>Curves </p><p>Taweechai Nuntawisuttiwong, Natasha Dejdumrong </p><p>Abstract—Newton-Lagrange Interpolations are widely used in&nbsp;quadratic computation time, which is slower than the others. </p><p>numerical analysis. However, it requires a quadratic computational </p><p>However, there are some curves in CAGD, Wang-Ball, DP </p><p>time for their constructions. In computer aided geometric design </p><p>and Dejdumrong curves with linear complexity. In order to </p><p>(CAGD), there are some polynomial curves: Wang-Ball, DP and </p><p>reduce their computational time, Be´zier curve is converted into any of Wang-Ball, DP and Dejdumrong curves. Hence, </p><p>Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and&nbsp;the computational time for Newton-Lagrange interpolations Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong </p><p>can be reduced by converting them into Wang-Ball, DP and </p><p>algorithms, first, it is necessary to convert Newton-Lagrange </p><p>Dejdumrong algorithms. Thus, it is necessary to investigate </p><p>polynomials into Wang-Ball, DP or Dejdumrong polynomials. In </p><p>the conversion from Newton-Lagrange interpolation into the curves with linear complexity, Wang-Ball, DP and </p><p>this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational&nbsp;Dejdumrong curves. An application of this work is to modify time for representing Newton-Lagrange polynomials can be reduced </p><p>sketched image in CAD application with the computational </p><p>into linear complexity. In addition, the other utilizations of using </p><p>time reduction for plotting Newton-Lagrange curves. </p><p>CAGD curves to modify the Newton-Lagrange curves can be taken. <br>Keywords—Newton interpolation, Lagrange interpolation, linear </p><p>II. NEWTON &amp; LAGRANGE POLYNOMIALS </p><p>complexity. </p><p>Although Newton and Lagrange polynomials are different representations, their simple forms are the same polynomials. </p><p>I. INTRODUCTION </p><p>Newton applies Divided Difference method to represent its <br>HERE are many interpolation methods used in numerical polynomial while Lagrange uses simpler formula. At the </p><p>analysis. The popular one is Newton’s divided-difference </p><p>T</p><p>beginning, it is important to introduce both methods. Newton interpolating polynomial. The Newton’s method was given by and Lagrange polynomials can be shown as follows: </p><p>Isaac Newton written in Lemma 5 of Book III of his Principia </p><p>Mathematica of 1687 [1] but it was known to him before </p><p>A. Newton&nbsp;Polynomial </p><p>from the letter he wrote to Oldenburg [2]. The simple forms <br>Let N(t) be the Newton polynomial of control points, of Newton interpolating polynomials, Lagrange interpolations, </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">{<strong>b</strong><sub style="top: 0.1208em;">i</sub>}<sub style="top: 0.2099em;">i=0</sub>, and the weight, {t<sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, then </li><li style="flex:1">were published by Joseph-Louis Lagrange under his name. </li></ul><p></p><p>However, the same formula had been produced by Waring sixteen years earlier. </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">i</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>N(t) = </p><p>f[t<sub style="top: 0.1211em;">i</sub>, t<sub style="top: 0.1211em;">i−1</sub>, .., t<sub style="top: 0.1211em;">0</sub>] <br>(t − t<sub style="top: 0.1211em;">j</sub>), tꢀ[t<sub style="top: 0.1211em;">0</sub>, t<sub style="top: 0.1211em;">n</sub>] (1) </p><p>Newton-Lagrange interpolations can be beneficial to estimate intermediate data between precise data points or to predict the future data. In addition, Newton-Lagrange interpolations can be used to vectorize a raster-image into a vector image. However, a quadratic computational time, O(n<sup style="top: -0.2933em;">2</sup>), must be taken to construct a Newton-Lagrange interpolation. <br>In computer aided geometric design (CAGD), there are many polynomial curves, e.g. Be´zier [3], Said-Ball [4], Wang-Ball [5], DP [6], NB1 [7], [8] and Dejdumrong [9] curves. The difference between Newton-Lagrange and CAGD curves is the utilization of CAGD curves that is for CAD/CAM modeling. In CAGD curves, Be´zier curves are widely used in CAD software because they are better in shape preserving and possess simple forms. Unfortunately, Be´zier curve has a </p><p></p><ul style="display: flex;"><li style="flex:1">i=0 </li><li style="flex:1">j=0 </li></ul><p></p><p>where </p><p>f[t<sub style="top: 0.1211em;">i</sub>, t<sub style="top: 0.1211em;">i−1</sub>, .., t<sub style="top: 0.1211em;">k+1</sub>] − f[t<sub style="top: 0.1211em;">i−1</sub>, t<sub style="top: 0.1211em;">i−2</sub>, .., t<sub style="top: 0.1211em;">k</sub>] </p><ul style="display: flex;"><li style="flex:1">f[t<sub style="top: 0.1212em;">i</sub>, t<sub style="top: 0.1212em;">i−1</sub>, .., t<sub style="top: 0.1212em;">k</sub>] = </li><li style="flex:1">,</li></ul><p></p><p>t<sub style="top: 0.1211em;">i </sub>− t<sub style="top: 0.1211em;">k </sub></p><p>(2) and </p><p>f[t<sub style="top: 0.1211em;">i</sub>] = <strong>b</strong><sub style="top: 0.1211em;">i</sub>. </p><p>(3) </p><p>B. Lagrange Polynomial </p><p>Let L(t) be the Lagrange polynomial of control points, </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>{<strong>v</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, and the weight, {t<sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2102em;">i=0</sub>, then </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>t − t<sub style="top: 0.121em;">j </sub></p><p>L(t) = </p><p><strong>v</strong><sub style="top: 0.121em;">i </sub></p><p>, tꢀ[t<sub style="top: 0.121em;">0</sub>, t<sub style="top: 0.121em;">n</sub>]. </p><p>(4) </p><p>t<sub style="top: 0.1211em;">i </sub>− t<sub style="top: 0.1211em;">j </sub></p><p>i=0 </p><p></p><ul style="display: flex;"><li style="flex:1">j=0,j </li><li style="flex:1">ꢀ=i </li></ul><p></p><p>T. Nuntawisuttiwong and N. Dejdumrong are with the Department of Computer Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand (e-mail: [email protected], [email protected]). </p><p>In CAGD curves, there exists the power basis form for representing curves. In this work, the power basis </p><p></p><ul style="display: flex;"><li style="flex:1">International Scholarly and Scientific Research &amp; Innovation 13(8) 2019 </li><li style="flex:1">448 </li><li style="flex:1">ISNI:0000000091950263 </li></ul><p>World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering <br>Vol:13, No:8, 2019 </p><p>representations for Newton and Lagrange polynomial are&nbsp;O(n). Thus, the computational time can also be reduced by investigated. Thus, Newton and Lagrange polynomial can be&nbsp;using the conversion from Newton-Lagrange polynomials into </p><ul style="display: flex;"><li style="flex:1">computed by the following definition. </li><li style="flex:1">Wang-Ball, DP or Dejdumrong curves. </li></ul><p></p><p>Definition 1. Newton-Lagrange Power Basis: Let N(t) and L(t) be Newton and Lagrange polynomial with their control </p><p>III. CONVERSION FROM UNIFORM NEWTON-LAGRANGE <br>POLYNOMIALS INTO CAGD CURVE </p><p>n</p><p>points, {<strong>b</strong><sub style="top: 0.1209em;">i</sub>}<sub style="top: 0.2102em;">i=0</sub>. Newton and Lagrange polynomial can be represented by using power basis as follows: </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>A. Conversion from Uniform Newton-Lagrange Curve into <br>Wang-Ball Curve </p><p>ꢀ ꢀ </p><p>N(t) = L(t) = </p><p><strong>b</strong><sub style="top: 0.121em;">i </sub>· f<sub style="top: 0.121em;">i,j </sub>· t<sup style="top: -0.3333em;">i</sup>, </p><p>(5) (6) </p><p>i=0 j=0 </p><p>n</p><p>Wang-Ball control points, {<strong>p</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, can be obtained from </p><p>where f<sub style="top: 0.1211em;">i,j </sub>is Newton-Lagrange power basis defined by </p><p>n</p><p>Newton control points, {<strong>b</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, and Lagrange control points, </p><p>nn</p><p>{<strong>v</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, as follows: </p><p>F</p><p><sub style="top: 0.2101em;">i,n−j</sub>(0) </p><p>ꢂ</p><p>f<sub style="top: 0.1211em;">i,j </sub></p><p>=</p><p>ni=0,i </p><p><sub style="top: 0.2421em;">=j </sub>t<sub style="top: 0.1211em;">j </sub>− t<sub style="top: 0.1211em;">i </sub></p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢄ</li></ul><p></p><p>ꢀ</p><p><strong>p</strong><sub style="top: 0.1211em;">0 </sub><strong>p</strong><sub style="top: 0.1211em;">1 </sub>· · ·&nbsp;<strong>p</strong><sub style="top: 0.1211em;">n </sub></p><p>=</p><p><strong>b</strong><sub style="top: 0.1211em;">0 </sub><strong>b</strong><sub style="top: 0.1211em;">1 </sub>· · ·&nbsp;<strong>b</strong><sub style="top: 0.1211em;">n </sub>· <strong>A</strong><sup style="top: -0.3332em;">−1 </sup></p><p>and </p><p>(12) </p><p>⎧⎨</p><p>and </p><p><strong>p</strong><sub style="top: 0.121em;">0 </sub><strong>p</strong><sub style="top: 0.121em;">1 </sub>· · ·&nbsp;<strong>p</strong><sub style="top: 0.121em;">n </sub></p><p>1</p><p>,,</p><p>for j = 0, </p><p>n</p><p>F</p><p><sub style="top: 0.1996em;">i,n−j</sub>(u) = </p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢄ</li></ul><p>ꢃ</p><p>=</p><p><strong>v</strong><sub style="top: 0.121em;">0 </sub><strong>v</strong><sub style="top: 0.121em;">1 </sub>· · ·&nbsp;<strong>v</strong><sub style="top: 0.121em;">n </sub>·<strong>A</strong><sup style="top: -0.3332em;">−1 </sup>(13) </p><p>⎩</p><p>n−j+1 </p><p>n</p><p><sub style="top: 0.2421em;">=i </sub>F<sub style="top: 0.2102em;">i,j−1</sub>(k + 1)t<sub style="top: 0.1211em;">k </sub></p><p>for j &gt; 0. </p><p>(7) </p><p>k=u,k </p><p>ꢀ</p><p>where </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p>Definition 2. Newton-Lagrange Monomial Matrices: Newton and Lagrange polynomials can be represented by using monomial matrix forms as follows: </p><p><strong>a</strong><sub style="top: 0.121em;">0,0 </sub><strong>a</strong><sub style="top: 0.121em;">0,1 </sub>. . .&nbsp;<strong>a</strong><sub style="top: 0.121em;">0,n </sub><strong>a</strong><sub style="top: 0.1211em;">1,0 </sub><strong>a</strong><sub style="top: 0.1211em;">1,1 </sub>. . .&nbsp;<strong>a</strong><sub style="top: 0.1211em;">1,n </sub></p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦</p><p><strong>A </strong>= </p><p>(14) <br>...<br>...<br>...<br>.<br>.</p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p>.</p><p>1</p><p>t</p><p><strong>a</strong><sub style="top: 0.121em;">n,0 </sub><strong>a</strong><sub style="top: 0.121em;">n,1 </sub>. . .&nbsp;<strong>a</strong><sub style="top: 0.121em;">n,n </sub></p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦<br>ꢄ</p><p>N(t) = L(t) =&nbsp;<strong>b</strong><sub style="top: 0.1209em;">0 </sub><strong>b</strong><sub style="top: 0.121em;">1 </sub>· · ·&nbsp;<strong>b</strong><sub style="top: 0.121em;">n </sub>· <strong>M </strong>· </p><p>(8) </p><p>...</p><p>and </p><p>t<sup style="top: -0.2931em;">n </sup></p><p>ꢅ ꢆ <br>⎧</p><p>⎪</p><p>n</p><p>2</p><p>(2t<sub style="top: 0.1215em;">j</sub>)<sup style="top: -0.2925em;">i</sup>(1 − t<sub style="top: 0.1215em;">j</sub>)<sup style="top: -0.2925em;">i+2 </sup></p><p>,,,,</p><p>for 0 ≤ i ≤ </p><p>n</p><p>for i = </p><p>2</p><p>− 1 </p><p>⎪⎪</p><p>where <strong>M </strong>is Newton-Lagrange monomial matrix defined as </p><p>⎪⎪⎪⎪<br>ꢅ ꢆ </p><p>in−i </p><p>follows: </p><p>⎪ (2t<sub style="top: 0.1228em;">j</sub>) (1 − t<sub style="top: 0.1228em;">j</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p>⎪⎨</p><p>f<sub style="top: 0.1211em;">0,0 </sub>f<sub style="top: 0.121em;">0,1 </sub>. . .&nbsp;f<sub style="top: 0.121em;">0,n </sub>f<sub style="top: 0.1211em;">1,0 </sub>f<sub style="top: 0.1211em;">1,1 </sub>. . .&nbsp;f<sub style="top: 0.1211em;">1,n </sub></p><p><strong>a</strong><sup style="top: -0.3333em;">n</sup><sub style="top: 0.1995em;">i,j</sub>(t) = </p><p>ꢇ ꢈ <br>⎢⎢⎢⎣<br>⎥⎥⎥⎦</p><p>n</p><p>for i = </p><p>2</p><p>(2(1 − t<sub style="top: 0.1211em;">j</sub>))<sup style="top: -0.2928em;">n−i</sup>(t<sub style="top: 0.1211em;">j</sub>)<sup style="top: -0.2928em;">i </sup></p><p>⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩</p><p><strong>M </strong>= </p><p>.</p><p>(9) </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li></ul><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li></ul><p>.</p><p>ꢇ ꢈ </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">.</li><li style="flex:1">.</li></ul><p></p><p>n</p><p><strong>a</strong><sup style="top: -0.2929em;">n</sup><sub style="top: 0.2101em;">n−i,j</sub>(1 − t<sub style="top: 0.1211em;">j</sub>) </p><p>for <br>+ 1 ≤ i ≤ n </p><p>2</p><p>f<sub style="top: 0.1209em;">n,0 </sub>f<sub style="top: 0.1211em;">n,1 </sub>. . .&nbsp;f<sub style="top: 0.1211em;">n,n </sub></p><p></p><ul style="display: flex;"><li style="flex:1">(15) </li><li style="flex:1">The matrix inverse of Newton-Lagrange monomial matrix </li></ul><p>can be expressed as follows: </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p>−1 </p><p>f<sub style="top: 0.1212em;">0,0 </sub>f<sub style="top: 0.1211em;">0,1 </sub>. . .&nbsp;f<sub style="top: 0.1211em;">0,n </sub>f<sub style="top: 0.121em;">1,0 </sub>f<sub style="top: 0.121em;">1,1 </sub>. . .&nbsp;f<sub style="top: 0.121em;">1,n </sub></p><p>B. Conversion from Uniform Newton-Lagrange Curve into <br>DP Curve </p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦</p><p><strong>M</strong><sup style="top: -0.2929em;">−1 </sup></p><p>==</p><p>...<br>...<br>...<br>.<br>.<br>.</p><p>n</p><p>DP control points, {<strong>q</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, can be obtained from Newton </p><p>f<sub style="top: 0.1211em;">n,0 </sub>f<sub style="top: 0.1211em;">n,1 </sub>. . .&nbsp;f<sub style="top: 0.1211em;">n,n </sub></p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">control points, {<strong>b</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, and Lagrange control points, {<strong>v</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0 </sub></li><li style="flex:1">,</li></ul><p>(10) </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p>as follows: </p><p><strong>g</strong><sub style="top: 0.1211em;">0,0 </sub><strong>g</strong><sub style="top: 0.1211em;">0,1 </sub>. . .&nbsp;<strong>g</strong><sub style="top: 0.1211em;">0,n </sub><strong>g</strong><sub style="top: 0.121em;">1,0 </sub><strong>g</strong><sub style="top: 0.121em;">1,1 </sub>. . .&nbsp;<strong>g</strong><sub style="top: 0.121em;">1,n </sub></p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦<br>ꢄꢄ<br>ꢄ</p><p><strong>q</strong><sub style="top: 0.121em;">0 </sub><strong>q</strong><sub style="top: 0.1211em;">1 </sub>· · ·&nbsp;<strong>q</strong><sub style="top: 0.1211em;">n </sub></p><p>==</p><p><strong>b</strong><sub style="top: 0.1211em;">0 </sub><strong>b</strong><sub style="top: 0.1211em;">1 </sub>· · ·&nbsp;<strong>b</strong><sub style="top: 0.1211em;">n </sub>·<strong>C</strong><sup style="top: -0.3332em;">−1 </sup>(16) </p><p>,</p><p>...<br>...<br>...<br>.<br>.<br>.</p><p><strong>g</strong><sub style="top: 0.1207em;">n,0 </sub><strong>g</strong><sub style="top: 0.1211em;">n,1 </sub>. . .&nbsp;<strong>g</strong><sub style="top: 0.1211em;">n,n </sub></p><p>and </p><p>ꢄ</p><p>where </p><p>⎧</p><p><strong>q</strong><sub style="top: 0.1212em;">0 </sub><strong>q</strong><sub style="top: 0.1212em;">1 </sub>· · ·&nbsp;<strong>q</strong><sub style="top: 0.1212em;">n </sub><strong>v</strong><sub style="top: 0.1212em;">0 </sub><strong>v</strong><sub style="top: 0.1212em;">1 </sub>· · ·&nbsp;<strong>v</strong><sub style="top: 0.1212em;">n </sub>·<strong>C</strong><sup style="top: -0.3333em;">−1 </sup>(17) </p><p>1</p><p>,,</p><p>for i = 0, </p><p>⎨⎩</p><p><strong>g</strong><sub style="top: 0.1211em;">i,j </sub></p><p>=</p><p>(11) </p><p>t<sub style="top: 0.21em;">j</sub><sup style="top: -0.293em;">i </sup></p><p>for i &gt; 0. </p><p>where </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p></p><p><strong>c</strong><sub style="top: 0.1212em;">0,0 </sub><strong>c</strong><sub style="top: 0.1211em;">0,1 </sub>. . .&nbsp;<strong>c</strong><sub style="top: 0.1211em;">0,n </sub><strong>c</strong><sub style="top: 0.1211em;">1,0 </sub><strong>c</strong><sub style="top: 0.1211em;">1,1 </sub>. . .&nbsp;<strong>c</strong><sub style="top: 0.1211em;">1,n </sub></p><p>...<br>Newton and Lagrange polynomial are very useful for polynomial interpolation. However, they take a lot of computational time, O(n<sup style="top: -0.2931em;">2</sup>). In CAGD curves, Wang-Ball, DP and Dejdumrong curves consume linear computational time, </p><p>⎢⎢⎢⎣<br>⎥⎥⎥⎦</p><p><strong>C </strong>= </p><p>(18) <br>...<br>...<br>.<br>.<br>.</p><p><strong>c</strong><sub style="top: 0.1212em;">n,0 </sub><strong>c</strong><sub style="top: 0.1212em;">n,1 </sub>. . .&nbsp;<strong>c</strong><sub style="top: 0.1212em;">n,n </sub></p><p></p><ul style="display: flex;"><li style="flex:1">International Scholarly and Scientific Research &amp; Innovation 13(8) 2019 </li><li style="flex:1">449 </li><li style="flex:1">ISNI:0000000091950263 </li></ul><p>World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering <br>Vol:13, No:8, 2019 </p><p>and </p><p>IV. CONVERSION FROM NONUNIFORM NEWTON-LAGRANGE INTO CAGD CURVES </p><p>⎧</p><p>(−1)<sup style="top: -0.2923em;">n−i</sup>(1 − t<sub style="top: 0.1211em;">j</sub>)<sup style="top: -0.2929em;">n </sup>(−1)<sup style="top: -0.293em;">n−i</sup>(1 − t<sub style="top: 0.121em;">j</sub>)<sup style="top: -0.293em;">n−i</sup>t<sub style="top: 0.121em;">j </sub><br>, for i = 0 </p><p>⎪⎪⎪⎪</p><p>A. Conversion from Nonuniform Newton-Lagrange curve into Nonuniform Wang-Ball curve </p><p>⎪⎪⎪⎪⎪⎪</p><p>, for 0&nbsp;&lt; i ≤ </p><p>ꢅ ꢆ </p><p>n</p><p>⎪⎪⎪⎪</p><p>− 1 </p><p>2</p><p>n</p><p>Wang-Ball control points, {<strong>p</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, can be transformed from </p><p>⎪⎪⎪⎪</p><p>n</p><p>Newton control points, {<strong>b</strong><sub style="top: 0.121em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, and Lagrange control points, </p><p>⎪ (−1)<sup style="top: -0.2929em;">n−i</sup>(n − 2i)(1 − t<sub style="top: 0.1211em;">j</sub>)<sup style="top: -0.2929em;">i+1</sup>t<sub style="top: 0.1211em;">j</sub>+ </p><p>⎪⎪</p><p>n</p><p>⎪</p><p>n</p><p>2</p><p>{<strong>v</strong><sub style="top: 0.1211em;">i</sub>}<sub style="top: 0.2101em;">i=0</sub>, as follows: </p><p></p><ul style="display: flex;"><li style="flex:1">⎪</li><li style="flex:1">ꢅ ꢆ </li></ul><p></p><p>n</p><p>2</p><p>n</p><p>2</p><p>+1 </p><p>ꢂ ꢃ </p><p>⎪⎪⎪⎪⎪⎪⎪⎨</p><p>−</p><p>n</p><p>1</p><p>n</p><p>, for i = </p><p>2</p><p>ꢀ ꢁ ꢂ ꢃ </p><p></p><ul style="display: flex;"><li style="flex:1">(<sub style="top: 0.2783em;">2 </sub>) </li><li style="flex:1">(1 − t<sub style="top: 0.225em;">j </sub></li><li style="flex:1">+</li></ul><p></p><p>ꢄꢄ<br>ꢄ</p><p><strong>b</strong><sub style="top: 0.121em;">0 </sub><strong>b</strong><sub style="top: 0.121em;">1 </sub>· · ·&nbsp;<strong>b</strong><sub style="top: 0.121em;">n </sub>·A<sup style="top: -0.3333em;">−1 </sup>(24) </p><p>n</p><p>+1 </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ ꢃ </li><li style="flex:1">ꢂ ꢃ </li></ul><p></p><p><strong>p</strong><sub style="top: 0.121em;">0 </sub><strong>p</strong><sub style="top: 0.121em;">1 </sub>· · ·&nbsp;<strong>p</strong><sub style="top: 0.121em;">n </sub></p><p>==</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">(−1) </li><li style="flex:1">(1 − t<sub style="top: 0.1211em;">j</sub>) </li><li style="flex:1">)</li></ul><p></p><p><strong>c</strong><sup style="top: -0.3333em;">n</sup><sub style="top: 0.1995em;">i,j</sub>(t) = </p><p>and </p><p>⎪</p><p>t<sub style="top: 0.0807em;">j </sub>−a </p><p></p><ul style="display: flex;"><li style="flex:1">(n − 2i)(<sup style="top: -0.4094em;">t</sup><sub style="top: 0.2783em;">b−</sub><sup style="top: -0.4094em;">−</sup><sub style="top: 0.2783em;">a</sub><sup style="top: -0.4094em;">b </sup>)( </li><li style="flex:1">)</li><li style="flex:1">+</li></ul><p></p><p>+1 </p><p>j</p><p>n−i+1 </p><p>⎪⎪⎪⎪⎪⎪⎪⎪</p><p>b−a </p><p>ꢄ<br>ꢇ ꢈ </p><p>n</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>2</p><p>t<sub style="top: 0.0807em;">j </sub>−a </p><p><strong>v</strong><sub style="top: 0.121em;">0 </sub><strong>v</strong><sub style="top: 0.121em;">1 </sub>· · ·&nbsp;<strong>v</strong><sub style="top: 0.121em;">n </sub>·A<sup style="top: -0.3333em;">−1 </sup>(25) </p><p>−</p><p>1</p><p>n</p><p>, for i = </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ ꢁ ꢂ ꢃ </li><li style="flex:1">ꢂ ꢃ </li></ul><p></p><p>2</p><p><strong>p</strong><sub style="top: 0.1209em;">0 </sub><strong>p</strong><sub style="top: 0.121em;">1 </sub>· · ·&nbsp;<strong>p</strong><sub style="top: 0.121em;">n </sub></p><p>(<sub style="top: 0.2784em;">2 </sub>) <br>(1 − ( <sub style="top: 0.2784em;">b−a </sub></p><ul style="display: flex;"><li style="flex:1">)</li><li style="flex:1">+</li></ul><p></p><p>⎪⎪⎪⎪</p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>+1 </p><p>ꢂ ꢃ </p><p>2</p><p>ꢂ ꢃ </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">(−1) </li><li style="flex:1">(1 − t<sub style="top: 0.121em;">j</sub>) </li><li style="flex:1">)</li></ul><p></p><p>⎪⎪⎪</p><p>where </p><p></p><ul style="display: flex;"><li style="flex:1">⎡</li><li style="flex:1">⎤</li></ul><p>⎪⎪⎪<br>ꢇ ꢈ </p><p>a<sub style="top: 0.1211em;">0,0 </sub>a<sub style="top: 0.1211em;">0,1 </sub>. . .&nbsp;a<sub style="top: 0.1211em;">0,n </sub>a<sub style="top: 0.1211em;">1,0 </sub>a<sub style="top: 0.1211em;">1,1 </sub>. . .&nbsp;a<sub style="top: 0.1211em;">1,n </sub></p><p>...</p><p>n</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">(−1)(1 − t<sub style="top: 0.1211em;">j</sub>)t<sup style="top: -0.2929em;">i</sup><sub style="top: 0.2101em;">j </sub></li><li style="flex:1">, for </li><li style="flex:1">+ 1 </li></ul><p></p><p>⎪⎪</p><ul style="display: flex;"><li style="flex:1">⎪</li><li style="flex:1">⎢</li></ul><p>⎢⎢⎣<br>⎥⎥⎥⎦<br>⎪⎪⎪⎪⎪⎪⎪</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us