DEVELOPMENT OF AN EXPERIMENTAL APPARATUS FOR THE TESTING OF NOVEL COOLING SYSTEMS FOR PROCESSORS Michael Hinton Master of Engineering Department of Mechanical Engineering McGill University Montr´eal, Qu´ebec August 13, 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Engineering ©Michael Hinton, 2017 ii ACKNOWLEDGEMENTS I would like to begin by thanking, most importantly, my supervisor, Professor Laurent Mydlarski. Through his continued support and guidance, I have grown as a scientific re- searcher and achieved my academic goals. I especially owe him a debt of gratitude for his role in bringing the present work to fruition. This research project was conducted in collaboration with Hypertec, a computer hard- ware and services company in the Montr´eal area. Hypertec provided resource support in the form of funding, equipment and personnel. Thank you to Eliot Ahdoot for his role in initiating the project and seeing it through, and a special thank you to Fabrice, Jihad, Gilles, Florian, Noman, and Joseph for all of their technical and procurement advice and support. Furthermore, I would like to voice my appreciation to the providers of financial support for this project. A McGill Engineering Undergradatuate Student Masters Award (MEUSMA) was granted by the McGill Faculty of Engineering. Moreover, I was awarded an Alexander Graham Bell Canada Graduate Scholarship-Master’s (CGS M) by the Natural Sciences and Engineering Research Council of Canada (NSERC), who also supplied an NSERC Engage grant. Lastly, Mitacs funded the project by means of a Mitacs Accelerate award. I would be remiss if I did not also thank my friends and family for their endless support. Whether that support was encouragement or, at times, a much needed distraction, it was greatly appreciated in all of its forms. I would also like to thank Justin Riggio for his help in translating the abstract of this thesis. iii ABSTRACT A computer system’s performance is largely dependent on its ability to effectively remove the substantial heat generated by its processor, which is concentrated in a relatively small area of the system. While air cooling techniques remain sufficient for most personal computer needs, liquid cooling technologies, such as microchannels, have become commonplace in the most advanced computer systems. With the goal of further improving the performance of advanced processors, an experimental apparatus has been designed and built to investigate new cooling methods. The present work covers the design, construction and testing of this processor cooling experimental apparatus, as well as an initial prototype cooling device. The apparatus contains a fluid loop that can handle high-pressure coolant flow, and is suitable for both single-phase and two-phase cooling devices. Furthermore, the fluid loop is equipped with a positive displacement pump that provides very accurate flow rates, and multiple temperature and pressure sensors. A dedicated computer controller and custom software application operate the data acquisition and control systems that have been incorporated into the experimental apparatus. Moreover, the apparatus has been designed to conduct two different types of experiments. Initial tests use a heated surface that simulates the charac- teristics of a real processor, and is capable of providing data from power and temperature sensors that cannot be incorporated into a processor. The second set of tests use a real pro- cessor inside an advanced computer system, and they determine the processor performance using the new cooling system. Given the overall aim of improving processor cooling, mul- tiple novel processor cooling device designs were conceived, and the most promising design was prototyped. The design uses a spray cooling method that directly targets the processor surface, thus eliminating thermal resistances that are inherent to most processor cooling devices. This thesis culminates with a presentation of the results of both types of tests using the protoype in the experimental apparatus. iv RESUM´ E´ La performance d’un syst`eme d’ordinateur est largement d´ependante de sa capacit´e d’enlever la chaleur provenant du processeur, qui se concentre sur une petite superficie, de mani`ere efficace. Le refroidissement par air est une technique ad´equate pour la majorit´edes ordinateurs personnels. Pour les syst`emes les plus avanc´es qui requi`erent un refroidissement plus important, les techniques `a base de liquides, tels que les microcanaux, sont devenues populaires. Ayant l’objectif d’am´eliorer la performance des processeurs avanc´es, un appareil a´et´econ¸cu et d´evelopp´e pour l’analyse de nouvelles m´ethodes de refroidissement. Ce tra- vail comprend la conception, la construction et l’analyse de l’appareil, ainsi qu’un prototype initial. L’appareil comprend un circuit de fluide capable de supporter la haute pression du fluide de refroidissement, de phase unique ou biphas´e. En outre, le circuit de fluide est ´equip´e d’une pompe `ad´eplacement positif, qui engendre des d´ebits tr`es pr´ecis, et de multi- ples capteurs de pression et de temp´erature. Un ordinateur d´edi´e et un logiciel personnalis´e, int´egr´e dans l’appareil, g`erent l’acquisition des donn´ees et le syst`eme de contrˆole. L’appareil est con¸cu pour conduire deux diff´erents types d’exp´eriences. Pour les tests initiaux, une surface chauff´ee simule les caract´eristiques d’un processeur r´eel et fournit les donn´ees des capteurs de temp´eratures et de puissances ´electriques qui n’existent pas au sein d’un pro- cesseur. Le deuxi`eme ensemble de tests utilise un processeur r´eel d’un syst`eme d’ordinateur avanc´epourd´eterminer la performance de la nouvelle m´ethode de refroidissement. Ayant l’objectif d’am´eliorer la performance des processeurs avanc´es, plusieurs conceptions nova- trices d’appareils ont ´et´econ¸cues et la conception la plus prometteuse a ´et´er´ealis´ee en prototype. Ce mod`ele utilise une m´ethode de refroidissement par atomisation visant di- rectement la surface du processeur afin d’´eliminer la r´esistance thermique qui est pr´esente dans la majorit´e des syst`emes de refroidissement pour processeur. Ce m´emoire culmine avec la pr´esentation des r´esultats des deux types de tests utilisant le prototype dans l’appareil exp´erimental. v TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................ iii ABSTRACT........................................ iv RESUM´ E´ .......................................... v LISTOFTABLES..................................... ix LISTOFFIGURES.................................... x NOMENCLATURE.................................... 1 1 Introduction...................................... 1 1.1 Background, Motivation and Overall Objectives .............. 1 1.2 Specific Objectives . ............................ 6 1.3 LiteratureReview............................... 7 1.3.1 Flat Surface Heat Transfer ...................... 7 1.3.2 Cooling Methods ........................... 8 1.3.3 Cooling Enhancement ......................... 19 1.4 OverviewofThesis.............................. 22 2 ExperimentalApparatus............................... 23 2.1 Fluid Loop: Design and Construction . ................... 23 2.1.1Overview................................ 24 2.1.2Pump.................................. 26 2.1.3RadiatorandFans........................... 28 2.1.4 Reservoirs ............................... 28 2.1.5Valves................................. 29 2.1.6Sensors................................. 29 2.1.7 Tubing and Fittings .......................... 31 2.1.8 Construction and Assembly ...................... 33 2.2 SimulatedCPU:DesignandConstruction.................. 34 2.2.1HeatedSurface............................. 34 2.2.2CaseandInsulation.......................... 35 2.2.3TemperatureSensors......................... 36 2.2.4ElectricalPower............................ 36 2.3 Real CPU: Computer System and Construction .............. 39 2.3.1 Computer System Specifications ................... 39 vi 2.3.2ComputerSystemSoftware...................... 41 2.3.3 Stand Construction and Assembly .................. 44 2.4 ControlandDataAcquisition........................ 44 2.4.1MasterController:RaspberryPi................... 45 2.4.2SlaveControllers............................ 46 2.4.3 Inputs ................................. 48 2.4.4Outputs................................ 50 2.4.5 Application ............................... 50 3 CPU Cooling Device ................................. 55 3.1 Design Objectives and Requirements .................... 55 3.2 ConceptualDesignOverview......................... 58 3.3 PrototypeDetailedDesign.......................... 61 3.3.1Coolant................................. 61 3.3.2Nozzle................................. 63 3.3.3SprayChamber............................ 65 3.4 Assembly .................................... 69 4 Methods........................................ 71 4.1 SimulatedCPUExperiments......................... 71 4.1.1Setup.................................. 71 4.1.2Experiment............................... 72 4.1.3 Shutdown and Obtaining Data .................... 73 4.2 RealCPUExperiments............................ 74 4.2.1Setup.................................. 74 4.2.2Experiment............................... 75 4.2.3 Shutdown and Obtaining Data .................... 77 5 Results......................................... 78 5.1 Fluid Flow Rate and Pressure Experiments ................. 78 5.2 SimulatedCPUExperiments........................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages130 Page
-
File Size-