Particle Identification

Particle Identification

Particle identification Katharina Müller, autumn 15 1 Particle identification (PID) important task for all detectors in particle and astro particle physics particle physics: B-physics, rare decays, CP violation, exotic hadronic decays quark-gluon plasma:identification of as many particles as possible astro particle physics: distinguish different nuclei, identify charged particles, photons neutrino detection distinguish π/K K/p, e/π, π0/γ .. but also neutrino/muon, ν / ν . μ e method for PID depends on energy range optimisation: efficiency and / or misidentification rate tag efficiency: ε = N / N n x x o i tag t misidentification rate ε = N / N c mis y y e j e methods: r d n mass determination u o lifetime r g k decay products c a missing energy B shower profile special detectors signal efficiency Katharina Müller, autumn 15 2 Particle ID: Example HERA-b Search for Φ→ KK physics drowned in background Φ→ KK decay only visible after particle identification Mass Φ= 1019 MeV Φ→ KK BR 48.9% Φ→ K0 K0 BR 34.2% Kaons identified L S Φ→ π+π-π0 BR 15.3% Katharina Müller, autumn 15 3 Particle ID no particle ID particle ID inivariant mass Red: signal B→D0K 3.7 10-4 Yellow: background B→D0π 4.8 10-3 Green: combinatorial background: random combinations of tracks → particle identification needed: select the right tool Katharina Müller, autumn 15 4 Particle identification ● dE/dX energy loss of charged particles → PID if momentum is known ● flight time (TOF) → velocity βc ● Cherenkov radiation (RICH) ● transition radiation (TR) ● cluster shape most detectors use several methods Katharina Müller, autumn 15 5 Example: ALICE collisions of heavy ions (Pb) at 5.5 TeV Quark-Gluon Plasma Hits in TOF red hits belong to one particle: time of flight → pion identify as many particles as possible! Katharina Müller, autumn 15 6 Example: ALICE ITS: Tracker dEdX TPC: dEdX TOF: Time of flight TRD: Transition radiation HMPID: RICH PMD: Photons PHOS: Photons Muon Arm: Muon ID Hits in TOF http://www.lhc-facts.ch/index.php?page=alice Katharina Müller, autumn 15 7 Time of fli!"t measurement (T%F) TOF: Time of flight good time resolution → scintillators length L p 2 particles (m , m ), momentum p 1 2 di#tance D L 1 1 t= − c 1 2 √1−x≃1+ x ,1/(1−x)≃1+ x , E≃ pc =1/ 1−2=E /m c2 L 1 1 L c 2 2 2 Δ t= ( − )≃ (m −m ) relativistic particles E>>mc 2 1 2 c + ( 2/ )2 + ( 2/ )2 2 p √1 m1c E1 √1 m2 c E2 (E ≃ pc and root expansion) L c non relativistic particles t= m −m p 1 2 Δt ~ Δm2/p2 : important for small velocities, large mass differences Katharina Müller, autumn 15 8 Time of fli!"t: measurement (T%&) L c ≃ 2− 2 t m1 m2 difference in TOF after 1m 2 p2 time resolution of scintillators 300 ps → kaon-pion separation up to 1 GeV with L = 3 m TOF limited for particles p < few GeV better time resolution: ● plastic scintillators: 80-300 ps ● parallel plates counters: 100-200 ps Katharina Müller, autumn 15 9 T%& measurement MeV 125 Phenix at RHIC Heavy ion physics 250 500 1000 flight distance 5 m 1000 plastic scintillators resolution 85 ps 4 σ Kaon/Pion separation p<4 GeV http://www.phenix.bnl.gov/WWW/tof/ Katharina Müller, autumn 15 10 (ELLE NA49 identification particle Trel = T/TPion Particle identificationT%& wit" Particle TOF TOF TOF and Katharina M Katharina üller, 15 autumn üller, Mass from TOF measurement TOF from Mass dE/dX 11 ALICE (T%F) TOF detector in very high multiplicity environment radius 3. 6 m → 150 m² ! scintillators too expensive → gas detectors multi gap resistive plate chambers (MGRPC) 160000 channels 2.5 x 3.5 cm² requirement: time resolution better than 100 ps MGRPC: small gap: good time resolution many gaps: high efficiency 2 x 5 gaps 250 μm 0.4 mm glass plates spacer: fishing line width 7 cm (2 Pads) length 120 cm (48 Pads) http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html Katharina Müller, autumn 15 12 ALICE (T%F) TOF with very high multiplicity radius 3. 6 m → 150 m² ! strips: length 240 cm 96 readout pads http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html Katharina Müller, autumn 15 13 ALICE (T%F) cleaning storage http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html Katharina Müller, autumn 15 14 ALICE (T%F) efficiency > 99.9% Efficiency and time resolution as function resolution better than 60 ps (design 80 ps) of particle flow http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html Katharina Müller, autumn 15 15 ALICE (T%&) Data cosmic rays: two tracks: two TOF signals Δt(exp) = L/c resolution Δt(meas)-Δt(exp) σ=125 ps two independent measurements → resolution for one track: σt =σ /√2 = 88.5 ps 2 σ k-π separation up to 5 GeV in pT http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TOF.html http://indico.cern.ch/materialDisplay.py?contribId=191&sessionId=15&materialId=slides&confId=181055 Katharina Müller, autumn 15 16 Ener!y loss dE/dX reminder Bethe-Bloch formula -* #eparation 2 2 2 −dE Z 1 1 2 me c T max C +, re#ol$tion! =K z2 [ ln −2− − ] dX A 2 2 I2 2 Z allows to determine βγ if momentum is known difficulties: ● crossings of bands in dE/dX vs p! ● saturation ● Landau-Tail ● control measurement uncertainties ● single measurements not usable K- have a relative difference of 10% for βγ>3 → high precision (few percent) needed for significant results Katharina Müller, autumn 15 17 http://arxiv-web3.library.cornell.edu/pdf/1209.5637 ALICE dE/dX Nucl. Instr. Meth. A622 (2010) 316 TPC: σ dE/dx = 5 % (Design) Inner tracker: σ dE/dx = 10-11 % (Design) Resolution vs # TPC track points Katharina Müller, autumn 15 18 .easurement of dE/dX Problem: Bethe Bloch formula only gives the mean → single measurements have large variations (Landau distribution) → multiple measurements of dE/dX needed (sampling) better method: truncated mean x% of the measurements with highest dE/dX values are neglected (typically 20-30%), or restricted dE/dX Improvement of resolution with „truncated mean“ (KLOE) Katharina Müller, autumn 15 19 Separation Po'er important measure separation power= Separation/Resolution strong momentum dependence Opal: require 2σ Separation: e-Pion p<14.3 GeV Pion-Kaon p<20.5 GeV Katharina Müller, autumn 15 20 .easurement of Landau-distribution several measurements of dE/dX: calculate probability that measured dE/dX distribution belongs to pion, kaon, p etc i P π(x) probability that pion produces a signal x in detector i i P K(x) kaon each particle produces a set of xi signals. probability that this set of signals originates from a pion is i i Pπ = ∏i P π(xi) or for a kaon PK = ∏i P K(xi) probability that particle is a pion P = Pπ/(Pπ+PK) already few measurements are enough to reach an effective pion-kaon separation up to 100 GeV. many measurements: fit Landau distribution Katharina Müller, autumn 15 21 /)#t0 uncertainties of dE/d2 measurement • non-linearities of readout electronics • stability of discriminator threshold • purity of chamber gas. Small impurities (10-6!) change gas amplification • stability of geometry, mechanical tolerances • pressure dependence of gas amplification • charge distribution depends on scattering angle • track multiplicity changes gas/amplification • noise • crosstalk •.....etc • has to be understood at the 1% level! Katharina Müller, autumn 15 22 Alice TPC: simulated #eparation Katharina Müller, autumn 15 23 Detector Accelerator Type Size B (T) Gas Mixture Pressure Number of Sampling Effective track dE/dx resolution (∅ x L) (bar) samples length (mm) length (bar * m) isol., dense (%) ALEPH LEP TPC 3.6 m x 4.4 m 1.5 Ar/CH4 (91/9) 1 338 4 1.35 4.5 ARGUS DORIS drift cells 1.7 m x 2 m 0.8 C3H8/Methylal 1 36 18 0.65 4.1 BaBar PEP-II drift cells 1.6 m x 2.8 m 1.5 He/i-C4H10 (80/20) 1 40 12 0.48 7.5 BELLE KEK-B drift cells 1.9 m x 2.2 m 1.5 He/C2H6 (50/50) 1 47 16 0.75 5.5 BES BEPC jet cells 2.3 m x 2.1 m 0.4 Ar/CO2/CH4 (89/10/1) 1 54 5 0.27 9.0 CDF TEVATRON jet cells 2.6 m x 3.2 m 1.5 Ar/C2H6/C2H6O (49.6/49.6/0.8) 1 32 12 0.38 7.0 CLEO II CESR drift cells 1.9 m x 1.9 m 1.5 Ar/C2H6 (50/50) 1 51 14 0.71 6.2 CLEO III CESR drift cells 1.6 m x 1.9 m 1.5 He/C3H8 (60/40) 1 47 14 0.66 5.0 CRISIS TEVATRON jet cells 1 m x 1 m x 3 m - Ar/CO2 (80/20) 1 192 15 2.88 3.2 DELPHI LEP TPC 2.4 m x 2.7 m 1.2 Ar/CH4 (80/20) 1 192 4 0.77 5.7 D0 FDC TEVATRON jet cells 1.2 m x 0.3 m - Ar/CH4/CO2 (93/4/3) 1 32 8 0.26 12.7 H1 HERA jet cells 1.7 m x 2.2 m 1.13 Ar/C2H6 (50/50) 1 56 10 0.56 10.0 JADE PETRA jet cells 1.6 m x 2.4 m 0.48 Ar/CH4/i-C4H10 (88.7/8.5/2.8) 4 48 10 1.92 6.5 KEDR VEPP-4M jet cells 1.1 m x 1.1 m 2.0 DME (100) 1 42 10 0.42 10.0 KLOE DAΦNE drift cells 4 m x 3.3 m 0.6 He/i-C4H10 (90/10) 1 58 28 1.62 3.5 MARK II SLC drift cells 3 m x 2.3 m 0.475 Ar/CO2/CH4 (89/10/1) 1 72 8.33 0.60 7.0 NA49 SPS TPC 3.8 m x 3.8 m x 1.3 m - Ar/CH4/CO2 (90/5/5) 1 90 40 3.60 4.7 OBELIX LEAR jet cells 1.6 m x 1.4 m 0.5 Ar/C2H6 (50/50) 1 40 15 0.60 12.0 OPAL LEP jet cells 3.6 m x 4 m 0.435 Ar/CH4/i-C4H10 (88.2/9.8/2) 4 159 10 6.36 2.8 SLD SLC jet cells 2 m x 2 m 0.6 CO2/Ar/i-C4H10 (75/21/4) 1 80 6 0.48 7.0 STAR RHIC TPC 4 m x 4.2 m 0.5 Ar/CH4 (90/10) 1 45 17.2 0.77 8.0 TOPAZ TRISTAN TPC 2.4 m x 2.2 m 1.0 Ar/CH4 (90/10) 3.5 175 4 2.45 4.4 TPC/2γ PEP TPC 2 m x 2 m 1.375 Ar/CH4 (80/20) 8.5 183 4 6.22 3.0 ZEUS HERA jet cells 1.7 m x 2.4 m 1.43 Ar/CO2/C2H6 (90/8/2) 1 72 8 0.58 8.5 Alice: 5% resolution best performance: large detectors & high pressure Katharina Müller, autumn 15 24 Di3erent approac": Cluster Countin! traditionally dE/dx measurements integrate all charge deposited on the wire as a proxy for number of primary ionisation fluctuations in gas gain and number of primary electrons degrades measurements counting primary ionization

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us