Multivariate Data Analysis Practical and Theoretical Aspects of Analysing Multivariate Data with R

Multivariate Data Analysis Practical and Theoretical Aspects of Analysing Multivariate Data with R

Multivariate Data Analysis Practical and theoretical aspects of analysing multivariate data with R Nick Fieller Sheffield © NRJF 1982 1 (Left blank for notes) © NRJF 1982 2 Multivariate Data Analysis: Contents Contents 0. Introduction ......................................................................... 1 0.0 Books..............................................................................................1 0.1 Objectives .......................................................................................3 0.2 Organization of course material......................................................3 0.3 A Note on S-PLUS and R.................................................................5 0.4 Data sets.........................................................................................6 0.4.1 R data sets ................................................................................................ 6 0.4.2 Data sets in other formats....................................................................... 6 0.5 Brian Everitt’s Data Sets and Functions .........................................7 0.6 R libraries required..........................................................................8 0.7 Subject Matter.................................................................................9 0.8 Subject Matter / Some Multivariate Problems...............................11 0.9 Basic Notation...............................................................................13 0.9.1 Notes ....................................................................................................... 14 0.9.2 Proof of results quoted in §0.9.1........................................................... 15 0.10 R Implementation........................................................................17 0.10.1 Illustration in R that var(XA)=Avar(X)A ........................................... 20 Tasks 1 ...............................................................................................23 1 Graphical Displays............................................................. 27 1.1 1 Dimension.................................................................................27 1.2 2 Dimensions ...............................................................................38 1.2.1 Examples: ............................................................................................... 38 1.3 3 Dimensions ...............................................................................42 1.4 3 Dimensions ............................................................................45 1.4.1 Sensible Methods................................................................................... 45 1.4.2 Andrews’ Plots ....................................................................................... 51 1.4.3 Whimsical Methods................................................................................ 58 1.4.4 Chernoff Faces ....................................................................................... 59 1.5 Further Reading............................................................................63 1.6 Conclusions ..................................................................................64 © NRJF 1982 i Multivariate Data Analysis: Contents 2 Reduction of Dimensionality............................................. 67 2.0 Preliminaries .................................................................................67 2.0.1 Warning:.................................................................................................. 67 2.0.2 A Procedure for Maximization............................................................... 67 2.1 Linear Techniques ........................................................................68 2.1.0 Introduction ............................................................................................ 68 2.1.1. Principal Components .......................................................................... 69 2.1.2 Computation ........................................................................................... 74 Tasks 2 ...............................................................................................76 2.1.3 Applications............................................................................................ 79 2.1.4 Example (from Morrison)....................................................................... 82 2.1.4.1 R calculations................................................................................................ 83 2.1.5 General Comments ................................................................................ 84 2.1.6 Further Example of Interpretation of PCA Coefficients ...................... 86 2.1.7 Computation in R ................................................................................... 91 2.1.7.1 R function screeplot() ............................................................................. 93 2.1.8 Example: Iris data. (Analysis in R)........................................................ 94 2.1.9 Biplots..................................................................................................... 96 2.1.10 Cars Example Again, Using Correlation Matrix ................................ 97 2.1.11 Notes ................................................................................................... 101 2.1.12 Miscellaneous comments.................................................................. 103 2.1.13 PCA and Outliers................................................................................ 104 2.1.14 Summary of Principal Component Analysis.................................... 106 Tasks 3 .............................................................................................107 2.2 Factor Analysis .........................................................................110 2.3 Non-Linear Techniques.............................................................111 2.3.1 Generalized Principal Components.................................................... 111 2.4 Summary.....................................................................................113 Tasks 4 .............................................................................................114 Exercises 1 .......................................................................................117 © NRJF 1982 ii Multivariate Data Analysis: Contents 3 Multidimensional Scaling Techniques ........................... 122 3.0 Introduction .................................................................................122 3.1 Illustrations..................................................................................126 3.1.1 Reconstructing France ........................................................................ 126 3.1.2 British Towns By Road ........................................................................ 128 3.1.3 Time Sequence Of Graves................................................................... 129 3.2 Non-metric methods....................................................................132 3.3 Metric Methods: The Classical Solution or...............................136 Principal Coordinate Analysis ...........................................................136 3.4 Comments on practicalities.........................................................139 3.5 Computer implementation...........................................................140 3.6 Examples ....................................................................................141 3.6.1 Road distances between European cities.......................................... 141 3.6.2 Confusion between Morse code signals............................................ 143 3.6.3 Confusion between symbols for digits: R analysis........................... 144 Tasks 5 .............................................................................................147 3.6.5 Notes (1): similarity or dissimilarity measures?................................ 150 3.6.6 Notes (2): caution on interpretation of close points ......................... 150 3.7 Minimum Spanning Trees ...........................................................151 3.7.1 Computation in R ................................................................................. 151 3.7.2 Example: Morse confusions................................................................ 152 3.8 Duality with PCA .........................................................................154 3.9 Further Examples........................................................................155 3.8.1 Iris Data................................................................................................. 156 3.8.2 Swiss Demographic Data .................................................................... 158 3.8.3 Forensic Glass Data............................................................................. 161 3.9 Summary and Conclusions .........................................................164 Tasks 6 .............................................................................................166 © NRJF 1982 iii Multivariate Data Analysis: Contents 4 Discriminant Analysis...................................................... 167 4.0 Summary.....................................................................................167 4.1 Introduction .................................................................................168 4.2 Outline of theory of LDA..............................................................169 4.3 Preliminaries

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    447 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us