Rotation and Orientation: Fundamentals Questions

Rotation and Orientation: Fundamentals Questions

Rotation and Orientation: Fundamentals Questions • How many DOFs f or 2D rot ati on? - Answer) One • How many DOFs for 3D rotation? - Answer) Three • How many DOFs for 4D rotation? - Answer) Six 중앙대학교 첨단영상대학원 박 경 주 What is Rotation? • No t in tu itive – Formal definitions are also confusing • Many different ways to describe – Rotation (direction cosine) matrix – Euler angles – Axis-angle – Rotation vector – Helical angles – Unit quaternions 중앙대학교 첨단영상대학원 박 경 주 Orientation vs . Rotation • RttiRotation – Circular movement • Orientation – The state of being oriented – Given a coordinate system, the orientation of an object can be represented as a rotation from a reference pose 중앙대학교 첨단영상대학원 박 경 주 3D Orientation • Given t wo arbit rary ori ent ati ons of a ri gid o bjec t, How many rotations do we need ttto transf orm one ori ent ttiation to the other? 중앙대학교 첨단영상대학원 박 경 주 Joints and Rotations Rotational DOFs are widely used in character animation 3 translational DOFs 48 rot ati onal DOF s Each joint can have up to 3 DOFs 1 DOF: knee 2 DOF: wrist 3 DOF: arm 중앙대학교 첨단영상대학원 박 경 주 Composite Transformations A series of transformations on an object can be applied as a series of matrix multiplications p: position in the global coordinate x: position in the local coordinate (h3, 0, 0) 중앙대학교 첨단영상대학원 박 경 주 Interpolation • In ord er to “ move thi ngs” , we need bo th translation and rotation • Interpolating the translation is easy, but what about rotations? 중앙대학교 첨단영상대학원 박 경 주 Interpolation of Orientation • HbtitltihtfthHow about interpolating each entry of the rotation matrix? Example: interpolate linearly from a positive 90 degree rotation about y axis to a negative 90 degree rotation about y 중앙대학교 첨단영상대학원 박 경 주 Leonhard Euler(1707-1783) • 3D ro ta tion – Can be described by three parameters • Euler angles : a rotation about a single Cartesian axis that moves with the object - roll, pitch and yaw 중앙대학교 첨단영상대학원 박 경 주 Euler angles • Gim ble – Hardware implementation ofEf Eu ler ang les – Aircraft, Camera • Gimble Lock – When two rotational axes of an object pointing in the same direction, the rotation ends up losing one degree of freedom - Poor interpolation 중앙대학교 첨단영상대학원 박 경 주 Quaternion 4lfl4 tuple of real num bers: scalar vector Same information as axis angles but in a different form 중앙대학교 첨단영상대학원 박 경 주 Quaternion math UitUnit qua tern ion Multiplication 중앙대학교 첨단영상대학원 박 경 주 Quaternion math CjConjuga te Inverse the unit length quaternion 중앙대학교 첨단영상대학원 박 경 주 Quaternion Rotation If q is a unit quaternion and -1 Then qqpq results in p rotating about r by theta 중앙대학교 첨단영상대학원 박 경 주 Quaternion Rotation 중앙대학교 첨단영상대학원 박 경 주 Quaternion composition If q1 and q2 are unit qua terni on the combined rotation of first rotating by q1 and then by q2 is equivalent to 중앙대학교 첨단영상대학원 박 경 주 Matrix form 중앙대학교 첨단영상대학원 박 경 주 Quaternion interpolation 1-angle rotation can be 2-angle rotation can be Represented by a unit circle represented by a unit sphere • Interpolation means moving on n-D sphere • NiNow imag ine a 4-DhD sphere f3for 3-anglttile rotation 중앙대학교 첨단영상대학원 박 경 주 Quaternion Interpolation • MiMoving btbetween two po itints on th4Ditthe 4D unit sphere – A unit quaternion at each step-another point on the 4D unit sphere – Move with constant angular velocity along the great circle between the two points on the 4D unit sphere 중앙대학교 첨단영상대학원 박 경 주 Quaternion interpolation Direct li near in terpo la tion does no t wor k Linearly interpolated intermediate points are not uniformly spaced when projected onto the circle Spherical linear interpolation (SLERP) Normalize to regain unit quaternion 중앙대학교 첨단영상대학원 박 경 주 Choose a representation • Choose the bes t represen ta tion for the task – Input : Euler angles – Joint Limits : Euler angles , quaternion (harder) – Interpolation : quaternion – Compos iting : qua tern ion or or ien ta tion ma tr ix – Rendering : orientation matrix 중앙대학교 첨단영상대학원 박 경 주.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us