Stochastic Quantization Equations

Stochastic Quantization Equations

Stochastic quantization equations Hao Shen (Columbia University) February 23, 2016 Page 1/25 1 2 I Ornstein-Uhlenbeck (d=0): S(X )= 2 X dX = X dt + dB t − t t 4 1 2 1 4 d I Φ model: S(φ)= 2 ( φ(x)) + 4 φ(x) d x ´ r @ φ =∆φ φ3 + ⇠ t − 1 2 2 I Sine-Gordon (d=2): S(φ)= 2β ( φ(x)) + cos(φ(x))d x ´ r 1 @t u = ∆u + sin(βu)+⇠ 2 Stochastic quantization Stochastic quantization: consider a Euclidean quantum field theory measure as a stationary distribution of a stochastic process. exp( S(φ)) φ/Z @ φ = δS(φ)/δφ + ⇠ − D ) t − where ⇠ is space-time white noise E[⇠(x, t)⇠(¯x, t¯)] = δ(d)(x x¯)δ(t t¯). − − Page 2/25 Stochastic quantization Stochastic quantization: consider a Euclidean quantum field theory measure as a stationary distribution of a stochastic process. exp( S(φ)) φ/Z @ φ = δS(φ)/δφ + ⇠ − D ) t − where ⇠ is space-time white noise E[⇠(x, t)⇠(¯x, t¯)] = δ(d)(x x¯)δ(t t¯). − − 1 2 I Ornstein-Uhlenbeck (d=0): S(X )= 2 X dX = X dt + dB t − t t 4 1 2 1 4 d I Φ model: S(φ)= 2 ( φ(x)) + 4 φ(x) d x ´ r @ φ =∆φ φ3 + ⇠ t − 1 2 2 I Sine-Gordon (d=2): S(φ)= 2β ( φ(x)) + cos(φ(x))d x ´ r 1 @t u = ∆u + sin(βu)+⇠ 2 Page 2/25 I The solution to the linear equation (when d 2) is a.s. a ≥ distribution – so φ3 and sin(βu) are meaningless! I Let ⇠ be smooth noise and ⇠ ⇠ " " ! 1 @t u" = ∆u" + sin(βu")+⇠" 2 Then u does not converge to any nontrivial limit as " 0. " ! Stochastic quantization: questions & difficulties I Field theory: construct the measure exp( S(φ)) φ/Z − D I Stochastic PDE: study well-posedness. @ φ =∆φ φ3 + ⇠ t − 1 @t u = ∆u + sin(βu)+⇠ 2 Page 3/25 Stochastic quantization: questions & difficulties I Field theory: construct the measure exp( S(φ)) φ/Z − D I Stochastic PDE: study well-posedness. @ φ =∆φ φ3 + ⇠ t − 1 @t u = ∆u + sin(βu)+⇠ 2 I The solution to the linear equation (when d 2) is a.s. a ≥ distribution – so φ3 and sin(βu) are meaningless! I Let ⇠ be smooth noise and ⇠ ⇠ " " ! 1 @t u" = ∆u" + sin(βu")+⇠" 2 Then u does not converge to any nontrivial limit as " 0. " ! Page 3/25 I Alternative theories: Dirichlet forms for Φ4 in 2D (Albeverio & Rockner ’91); Paracontrolled distribution method by Gubinelli et al, for Φ4 in 3D (Catellier & Chouk ’13); Renormalization group method for Φ4 in 3D (Kupiainen ’14). Two solution theories @ φ =∆φ φ3 + ⇠ t − 1 @t u = ∆u + sin(βu)+⇠ 2 I Da Prato - Debussche method: 4 I Φ in 2D (Da Prato & Debussche ’03), 2 I sine-Gordon with β < 4⇡ (Hairer & S. ’14). I Hairer’s regularity structure theory: 4 I Φ in 3D (Hairer ’13), 2 16⇡ I sine-Gordon with for 4⇡ β < (Hairer & S. ’14) (expect to 3 apply to all β2 < 8⇡;inprogress). Page 4/25 Two solution theories @ φ =∆φ φ3 + ⇠ t − 1 @t u = ∆u + sin(βu)+⇠ 2 I Da Prato - Debussche method: 4 I Φ in 2D (Da Prato & Debussche ’03), 2 I sine-Gordon with β < 4⇡ (Hairer & S. ’14). I Hairer’s regularity structure theory: 4 I Φ in 3D (Hairer ’13), 2 16⇡ I sine-Gordon with for 4⇡ β < (Hairer & S. ’14) (expect to 3 apply to all β2 < 8⇡;inprogress). I Alternative theories: Dirichlet forms for Φ4 in 2D (Albeverio & Rockner ’91); Paracontrolled distribution method by Gubinelli et al, for Φ4 in 3D (Catellier & Chouk ’13); Renormalization group method for Φ4 in 3D (Kupiainen ’14). Page 4/25 Outline I Sine-Gordon equation 2 I β < 4⇡: Apply Da Prato - Debussche method 2 I 4⇡ β < 16⇡/3: Apply regularity structure I Φ4 equation I Equation from gauge theory Page 5/25 I If exp(iβΦ") had nontrivial limit (actually not!) then 1 @t v = ∆v + f (v) 2 Da Prato - Debussche method 1 @t u" = ∆u" + sin(βu")+⇠" 2 Write u" =Φ" + v" where 1 @t Φ" = ∆Φ" + ⇠" 2 Then v" satisfies 1 @t v" = ∆v" + sin(βΦ") cos(βv")+cos(βΦ") sin(βv") 2 New random input: exp(iβΦ")=cos(βΦ")+i sin(βΦ"). Page 6/25 Da Prato - Debussche method 1 @t u" = ∆u" + sin(βu")+⇠" 2 Write u" =Φ" + v" where 1 @t Φ" = ∆Φ" + ⇠" 2 Then v" satisfies 1 @t v" = ∆v" + sin(βΦ") cos(βv")+cos(βΦ") sin(βv") 2 New random input: exp(iβΦ")=cos(βΦ")+i sin(βΦ"). I If exp(iβΦ") had nontrivial limit (actually not!) then 1 @t v = ∆v + f (v) 2 Page 6/25 PDE argument Let f be a smooth function, and C γ with γ> 1, 2 − 1 @t v = ∆v + f (v) 2 Let K =(@ 1 ∆) 1 be the heat kernel. Then: t − 2 − : v K ( f (v)) M 7! ⇤ defines a map from C 1 to C 1 itself: ↵ β (↵,β) I Young’s Thm: g C , h C , ↵ + β>0 gh C min 2 2 ) 2 f (v) C γ (γ> 1) 2 − 1 δ (Example of ↵ + β<0: BdB with B C 2 − Brownian motion) 2 I Schauder’s estimate: “heat kernel gives two more regularities” v C γ+2 C 1 M 2 ✓ Page 7/25 Da Prato - Debussche method I Back to our equation 1 @t v✏ = ∆v✏ + sin(βΦ") cos(βv")+cos(βΦ") sin(βv") 2 Q: Does exp(iβΦ ) converge to a limit in C γ with γ> 1? " − γ I Kolmogorov: To show random processes F F C , " ! 2 λ p γp E F",' λ h z i . γp λ p 'λ (λ− E F" F ,'z 0 z h − i ! z for p 1. 8 ≥ I λ Page 8/25 1 E Φ"(z)Φ"(z0) 2⇡ log( z z0 + ") 2 1⇠ | − | E Φ"(z) log " ( ⇥ ⇠⇤2⇡ !1 2 ⇥ ⇤ iβΦ" def β /(4⇡) iβΦ" Renormalise: e " = "− e 2 2 ¯ β β E "(z) "(z0) ( z z0 + ")− 2⇡ indicates " C − 2⇡ ⇠ | − | ! 2 h i Da Prato - Debussche method: second moment Question eiβΦ" ? in C γ with γ> 1 ! − 2 λ iβΦ (z) γ I Want: E ' (z)e " dz . λ2 h ´ i I Using characteristic function of Gaussian iβΦ"(z) iβΦ"(z ) E e e− 0 2 β 2 E (Φ"(z) Φ"(z0)) ⇥= e− 2 − ⇤ ⇥ ⇤ Page 9/25 Da Prato - Debussche method: second moment Question eiβΦ" ? in C γ with γ> 1 ! − 2 λ iβΦ (z) γ I Want: E ' (z)e " dz . λ2 h ´ i I Using characteristic function of Gaussian iβΦ"(z) iβΦ"(z ) E e e− 0 2 β 2 E (Φ"(z) Φ"(z0)) ⇥= e− 2 − ⇤ ⇥ ⇤ 1 E Φ"(z)Φ"(z0) 2⇡ log( z z0 + ") 2 1⇠ | − | E Φ"(z) log " ( ⇥ ⇠⇤2⇡ !1 2 ⇥ ⇤ iβΦ" def β /(4⇡) iβΦ" Renormalise: e " = "− e 2 2 ¯ β β E "(z) "(z0) ( z z0 + ")− 2⇡ indicates " C − 2⇡ ⇠ | − | ! 2 h i Page 9/25 Da Prato - Debussche method: higher moments + − − + + − z z β2/(2⇡) | − 0|− z z β2/(2⇡) | − 0| Page 10/25 Da Prato - Debussche method: higher moments + − + − − − . + + + + − − z z β2/(2⇡) | − 0|− z z β2/(2⇡) | − 0| 1 Conclusion: @t v = 2 ∆v + Im( ) cos(βv)+Re( ) sin(βv) is locally well-posed for β2 < 4⇡. Solutions of 1 β2/(4⇡) @t u" = ∆u" + "− sin(βu")+⇠" 2 converge to a limit u. (Recall u =Φ+v) Page 11/25 A Stochastic ODE example: dXt = f (Xt ) dBt γ 1 I For B Brownian motion, dB C (R+) with γ< ;the 2 − 2 argument breaks down - one needs extra information to define the product f (Xt )dBt . I Extra information can be given by rough path theory. Theory of regularity structure and β2 4⇡ ≥ If C γ with γ 1, 2 1 @t v = ∆v + f (v) 2 “Young’s theorem - Schauder’s estimate” argument breaks down. Page 12/25 Theory of regularity structure and β2 4⇡ ≥ If C γ with γ 1, 2 1 @t v = ∆v + f (v) 2 “Young’s theorem - Schauder’s estimate” argument breaks down. A Stochastic ODE example: dXt = f (Xt ) dBt γ 1 I For B Brownian motion, dB C (R+) with γ< ;the 2 − 2 argument breaks down - one needs extra information to define the product f (Xt )dBt . I Extra information can be given by rough path theory. Page 12/25 Stochastic ODE example For smooth function f dXt = f (Xt ) dBt I X locally “looks like” Brownian motion X X = g (B B )+sth. smoother t − t0 t0 · t − t0 I If X is as above, then so is f (X ),andfurthermore t 0 f (Xs ) dBs is also as above. ´ I Only need to define one product BdB. Page 13/25 Theory of regularity structure and β2 4⇡ ≥ 1 dXt = f (Xt ) dBt @t v = ∆v + f (v) 2 1/2 " 1 " dB C − − C − − 2 2 The solutions, at small scale, behave like t X B = dBs analogous v K ⇠ ˆ0 ⇠ ⇤ where K =(@ 1 ∆) 1. t − 2 − I Only need to define one product (K ). · ⇤ I Awholetheory(Theoryofregularitystructuresrecently developed by Martin Hairer) behind this “analogy”. Page 14/25 I Need to analyze p-th moment of (K ) for arbitrary p. ⇤ I This renormalization amounts to change of equation 1 @t v✏ = ∆v✏ + Im( ✏) cos(βv✏) C✏ cos(βv✏) cos0(βv✏) 2 − ⇣ ⌘ + Re( ) sin(βv ) C sin(βv ) sin0(βv ) ✏ ✏ − ✏ ✏ ✏ ⇣ ⌘ The two red terms cancel.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us