Quantum Field Theory I

Quantum Field Theory I

Quantum Field Theory I Babis Anastasiou Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland E-mail: [email protected] December 16, 2020 Contents 1 Quantum Field Theory. Why? 7 2 Review of principles of classical and quantum mechanics 8 2.1 Time evolution in classical mechanics . .8 2.1.1 Properties of Poisson brackets . 10 2.1.2 A way to think of classical time evolution . 11 2.2 Time evolution in quantum mechanics . 12 2.3 Conservation and symmetries in classical mechanics . 13 2.3.1 A classical example . 15 2.4 Symmetries in Quantum mechanics . 15 3 Theory of Classical Fields 18 3.1 Fields from a discretised space (lattice) . 18 3.2 Euler-Lagrange equations for a classical field from a Lagrangian density . 21 3.3 Noether's theorem . 22 3.3.1 Internal field symmetry transformations . 22 3.3.2 Space-Time symmetry transformations . 23 3.3.3 Energy-momentum tensor . 26 3.3.4 Lorentz symmetry transformations and conserved currents . 28 3.4 Field Hamiltonian Density from discretization . 31 3.4.1 Hamilton equations for fields . 32 3.5 An example: acoustic waves . 33 4 Quantisation of the Schr¨odingerfield 34 4.1 The Schr¨odingerequation from a Lagrangian density . 34 4.2 Symmetries of the Schroedinger field . 35 4.3 Quantisation of Fields . 37 4.4 Quantised Schr¨odingerfield . 38 4.5 Particle states from quantised fields . 39 4.6 What is the wave-function in the field quantisation formalism? . 42 5 The Klein-Gordon Field 45 5.1 Real Klein-Gordon field . 45 5.1.1 Real solution of the Klein-Gordon equation . 45 5.1.2 Quantitation of the real Klein-Gordon field . 47 5.1.3 Particle states for the real Klein-Gordon field . 47 5.1.4 Energy of particles and \normal ordering" . 48 5.1.5 Field momentum conservation . 50 5.1.6 Labels of particle states? . 51 1 5.2 Casimir effect: the energy of the vacuum . 51 5.3 Two real Klein-Gordon fields . 54 5.3.1 Two equal-mass real Klein-Gordon fields . 55 5.3.2 Two real Klein-Gordon fields = One complex Klein-Gordon field . 58 5.4 Conserved Charges as generators of symmetry transformations . 59 5.5 Can the Klein-Gordon field be an one-particle wave-function? . 60 6 Quantisation of the free electromagnetic field 62 6.1 Maxwell Equations and Lagrangian formulation . 62 6.1.1 Classical gauge invariance and gauge-fixing . 64 6.1.2 Lagrangian of the electromagnetic field . 65 6.2 Quantisation of the Electromagnetic Field . 65 6.3 Massive photons: The Higgs mechanism∗ .................. 68 7 The Dirac Equation 69 7.1 Mathematical interlude . 70 7.1.1 Pauli matrices and their properties . 70 7.1.2 Kronecker product of 2 × 2 matrices . 71 7.2 Dirac representation of γ-matrices . 71 7.3 Traces of γ− matrices . 73 7.4 γ−matrices as a basis of 4 × 4 matrices . 73 7.5 Lagrangian for the Dirac field . 74 8 Lorentz symmetry and free Fields 76 8.1 Field transformations and representations of the Lorentz group . 77 8.1.1 Scalar representation M(Λ) = 1 . 78 8.1.2 Vector representation M(Λ) = Λ . 79 8.2 Generators of field representations of Lorentz symmetry transformations 79 8.2.1 Generators of the scalar representation . 80 8.2.2 Generators of the vector representation . 81 8.2.3 Lie algebra of continuous groups . 82 8.3 Spinor representation . 84 8.4 Lorentz Invariance of the Dirac Lagrangian . 85 8.5 General representations of the Lorentz group . 86 8.6 Weyl spinors . 87 8.7 Majorana equation . 90 8.7.1 Majorana Lagrangian and Majorana equation in a four-dimensional spinor notation* . 91 9 Classical solutions of the Dirac equation 92 9.1 Solution in the rest frame . 93 9.2 Lorentz boost of rest frame Dirac spinor along the z-axis . 94 9.3 Solution for an arbitrary vector . 96 9.4 A general solution . 96 10 Quantization of the Dirac Field 98 10.1 One-particle states . 100 10.1.1 Particles and anti-particles . 100 1 10.1.2 Particles and anti-particles of spin- 2 ................ 101 2 10.2 Fermions . 103 10.3 Quantum symmetries . 104 10.4 Lorentz transformation of the quantized spinor field . 104 10.4.1 Transformation of the quantized Dirac field . 106 10.5 Parity . 107 10.6 Other discrete symmetries . 109 11 Propagation of free particles 110 11.1 Transition amplitude for the Schr¨odingerfield . 110 11.2 Transition amplitude for the real Klein-Gordon field . 111 11.3 Time Ordering and the Feynman-St¨uckelberg propagator for the real Klein- Gordon field . 114 11.4 Feynman propagator for the complex Klein-Grodon field . 115 11.5 Feynman propagator for the Dirac field . 116 11.6 Feynman propagator for the photon field . 117 11.7 Wick's theorem: time-ordering, normal-ordering and propagation . 117 11.7.1 Wick's theorem for Dirac fermion fields∗ .............. 120 11.7.2 Wick's theorem for Majorana fermions* . 123 12 Scattering Theory (S-matrix) 124 12.1 Propagation in a general field theory . 124 12.1.1 A special case: free scalar field theory . 128 12.1.2 \Typical" interacting scalar field theory . 129 12.2 Spectral assumptions in scattering theory . 130 12.3 \In" and \Out" states . 130 12.4 Scattering Matrix-Elements . 132 12.5 S-matrix and Green's functions . 133 12.6 The LSZ reduction formula . 134 12.7 Truncated Green's functions . 136 12.8 Cross-sections∗ ................................ 137 13 Perturbation Theory and Feynman Diagrams 138 13.1 Time evolution operator in the interaction picture . 139 13.2 Field operators in the interacting and free theory . 141 13.3 The ground state of the interacting and the free theory . 142 13.4 Feynman Diagrams for φ4 theory . 144 13.5 Feynman rules in momentum space . 147 13.6 Truncated Green's functions in perturbation theory . 149 14 Loop Integrals 151 14.1 The simplest loop integral. Wick rotation . 151 14.2 Dimensional Regularization . 153 14.2.1 Angular Integrations . 154 14.2.2 Properties of the Gamma function . 156 14.2.3 Radial Integrations . 157 14.3 Feynman Parameters . 157 3 15 Quantum Electrodynamics 160 15.1 Gauge invariance . 160 15.2 Perturbative QED . 162 15.3 Dimensional regularization for QED . 164 15.3.1 Gamma-matrices in dimensional regularization . 166 15.3.2 Tensor loop-integrals . 166 15.4 The electron propagator at one-loop . 169 15.5 Electron propagator at all orders . 170 15.5.1 The electron mass . 172 15.6 The photon propagator at one-loop . 173 15.7 Ward identity∗ ................................ 174 15.8 Photon propagator at all orders . 177 16 Renormalisation of QED 178 16.1 Running of the QED coupling constant and the electron mass∗ ...... 181 A Special Relativity 182 A.1 Proper time . 182 A.2 Subgroups of Lorentz transformations . 184 A.3 Time dilation . 185 A.4 Doppler effect . 186 A.5 Particle dynamics . 186 A.6 Energy and momentum . 188 A.7 The inverse of a Lorentz transformation . 189 A.8 Vectors and Tensors . 190 A.9 Currents and densities . 191 A.10 Energy-Momentum tensor . 193 A.11 Relativistic formulation of Electrodynamics . 195 A.11.1 Energy-Momentum Tensor in the presence of an electromagnetic field198 4 Bibliography [1] The Quantum Theory of Fields, Volume I Foundations, Steven Weinberg, Cambridge University Press. [2] An introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Addison- Wesley [3] Quantum Field Theory in a nutshell, A. Zee, Princeton University Press. [4] Quantum Field Theory, Mark Srednicki, Cambridge University Press. [5] An introduction to Quantum Field Theory, George Sterman, Cambridge University Press. [6] Classical Mechanics, Goldstein, Poole and Safko, Addison-Wesley [7] Lectures On Qed And Qcd: Practical Calculation And Renormalisation Of One- And Multi-loop Feynman Diagrams, Andrea Grozin, World Scientific 5 Conventions for Special Relativity Our metric convention is gµν = diag (1; −1; −1; −1) : (1) A contravariant position four-vector is xµ = (x0; x1; x2; x3) ≡ (ct; x; y; z) = (ct; ~x): (2) A covariant position four-vector is ν xµ = gµνx ; (3) which gives xµ = (x0; x1; x2; x3) ≡ (ct; −x; −y; −z) =.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    201 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us