Modeling earthquake source processes: from tectonics to dynamic rupture Appendix C, References cited Aagaard, B.T., and T. H. Heaton (2004). Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures. Bulletin of the Seismological Society of America; 94 (6): 2064–2078. Aagaard, B.T., Heaton, T.H., and J.F Hall (2001). Dynamic Earthquake Ruptures in the Presence of Lithostatic Normal Stresses: Implications for Friction Models and Heat Production Bulletin of the Seismological Society of America, v. 91, p. 1765-1796, doi:10.1785/0120000257. Aagaard, B. T., Knepley, M. G. and C. A. Williams (2013), A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, Journal of Geophysical Research, 118, 3059– 3079, doi: 10.1002/jgrb.50217. Aben, F. M., Doan, M.-L., Gratier, J.-P. and F. Renard (2017), Coseismic Damage Generation and Pulverization in Fault Zones: Insights From Dynamic Split-Hopkinson Pressure Bar Experiments, in Fault Zone Dynamic Processes, vol. 227, edited by M. Y. Thomas, T. M. Mitchell, and H. S. Bhat, pp. 47–80, John Wiley and Sons, Inc. Abercrombie, R. E. (2014), Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield, Geophys. Res. Lett., 41, 8784–8791, doi:10.1002/2014GL062079. Abercrombie, R. E. (2015), Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. Journal of Geophysical Research, 120, 4263–4277. doi: 10.1002/2015JB011984. Abercrombie, R. E., and J. Mori (1996), Occurrence patterns of foreshocks to large earthquakes in the western United States, Nature, 381, pp. 303–307. Abercrombie, R. E., and J.R., Rice (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162(2), 406–424. https://doi.org/10.1111/j.1365-246X.2005.02579.x Abercrombie, R. E. and P. Shearer, (2018). Towards Improved Stress Drop Measurement: A Detailed Comparison of Contrasting Approaches. Annual American Geophysical Union Fall Meeting. Adams M., Twardzik C., and C. Ji (2016), Exploring the uncertainty range of coseismic stress drop estimations of large earthquakes using finite fault inversions. Geophysical Journal International, 208 (1):86-100. Ader, T. J., N. Lapusta, J.-P. Avouac, and J.-P. Ampuero (2014), Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations, Geophys. J. Int., 198. Aguiar, A. C. and G. C. Beroza (2014), PageRank for earthquakes, Seismology Research Letters, 85(2):344-50. Aharonov, E., and C. H. Scholz (2019), The Brittle-Ductile Transition Predicted by a Physics-based Friction Law, J. Geophys. Res. Solid Earth, doi: 10.1029/2018JB016878 Aki, K. (1981). A Probabilistic Synthesis of Precursory Phenomena. Earthquake Prediction: An International Review 4: 566–74. Allam, A. A. and Y. Ben-Zion (2012), Seismic velocity structures in the Southern California plate-boundary environment from double-difference tomography, Geophys. J. Int., 190, 1181–1196, doi: 10.1111/j.1365-246X.2012.05544.x. Allam, A. A., Y. Ben-Zion, and Z. Peng (2014), Seismic imaging of a bimaterial interface along The Hayward Fault, CA, with fault zone head waves and direct P arrivals, Pure Applied Geophysics, 171(11), 2993–3011, doi:10.1007/s00024-014- 0784-0. Allison, K. L., and E.M. Dunham (2018). Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophysics, 733, 232–256. https://doi.org/10.1016/j.tecto.2017.10.021 Allix, O., and F. Hild (2002), Continuum Damage Mechanics of Materials and Structures, Elsevier. Allmann, B. P., and P. M. Shearer (2009), Global variations of stress drop for moderate to large earthquakes, Journal of Geophysical Research, 114, B01310, doi:10.1029/2008JB005821. Ampuero, J.P., and Y. Ben-Zion (2008), Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophysical Journal International 173 (2), 674-692. Ampuero, J. P., and X. Mao (2017), Upper limit on damage zone thickness controlled by seismogenic depth, in Fault Zone Dynamic Processes:, vol. 227, edited by M. Y. Thomas, T. M. Mitchell, and H. S. Bhat, p. 243, ,John Wiley and Sons, Inc. Ampuero, J. P., and A. M., Rubin (2008). Earthquake nucleation on rate and state faults–Aging and slip laws. Journal of Geophysical Research, 113 (B1). Anders, M. H., & Wiltschko, D. V. (1994). Microfracturing, paleostress and the growth of faults. Journal of Structural Geology, 16(6), 795-815. Anderson, E. M. (1951), The Dynamics of Faulting, 2nd ed., 206 pp., Oliver and Boyd, Edinburgh, Scotland. Ando, M. (2001), Geological and geophysical studies of the Nojima Fault from drilling: An outline of the Nojima Fault zone probe, Island Arc, 10(3-4), 206-214. Ando, M., and Y. Kaneko (2018). Dynamic rupture simulation reproduces spontaneous multi-fault rupture and arrest during the 2016 Mw 7.9 Kaikoura earthquake, Geophysical Research Letters, 45, 12,875–12,883. https://doi.org/10.1029/2018GL080550 Andrade, J. E., and C. F., Avila (2012). Granular element method (GEM): linking inter-particle forces with macroscopic loading. Granular Matter, 14(1), 51-61. Andrews, D. J. (1976). Rupture velocity of plane strain shear crack, Journal of Geophysical Research, 81(32), 5679-5687. Andrews, D. J., (2002), A fault constitutive relation accounting for thermal pressurization of pore fluid, Journal of Geophysical Research, 107(B12), 2363, doi:10.1029/2002JB001942. Andrews, D. J. (2005). Rupture dynamics with energy loss outside the slip zone. Journal of Geophysical Research: Solid Earth, 110(B1). Andrews, D. J., and M. Barall (2011). Specifying initial stress for dynamic heterogeneous earthquake source models, Bulletin of the Seismological Society of America, 101, no. 5, 2408–2417, doi:10.1785/0120110012. Andrews, D. J., and Y. Ben-Zion (1997), Wrinkle-like slip pulse on a fault between different materials, Journal of Geophysical Research: Solid Earth 102 (B1), 553-571, 1997. Andrews, D. J., and S. Ma (2016), Validating a dynamic earthquake model to produce realistic ground motion, Bull. Seismol. Soc. Am., 106, 665–672, doi: 10.1785/0120150251. Angiboust, S., J. Kirsch, O. Oncken, J. Glodny, P. Monie, and E. Rybacki (2015), Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface, Geochemistry Geophysics Geosystems, 5, 1905–1922, doi:10.1002/2015GC005776. Aochi, H. (2003), The role of fault continuity at depth in numerical simulations of earthquake rupture, Bulletin of the Earthquake Research Institute, 78, 75-82. Aochi, H., and M. Matsu'ura (2002). Slip- and Time-dependent Fault Consitutive Law and its Significance in Earthquake Generation Cycles. Pure and Applied Geophysics, 159, 9, 2029-2044. 1 Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., et al. (2017). Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science, 356(6343), 1157–1160. https://doi.org/10.1126/science.aan3120 Archard, F, J. (1959). The Temperature of Rubbing Surfaces, Wear, Vol. 2, Iss. 6., https://doi.org/10.1016/0043- 1648(59)90159-0 Archuleta, R.J. (1984). A faulting model for the 1979 Imperial Valley earthquake, Journal of Geophysical Research: Solid Earth 89, B6, 4559-4585. Ashby, M. F., and C. G. Sammis (1990), The damage mechanics of brittle solids in compression, Pure and Applied Geophysics 133, 489–521. Atkinson, M., Carpené, M., Casarotti, E., Claus, S., Filgueira, R., Frank, A., Galea, M., Garth, T., Gemünd, A., Igel, H. and I., Klampanos (2015). VERCE delivers a productive e-Science environment for seismology research. Proceedings of the 2015 IEEE 11th International Conference on e-Science.Pages 224-236. Avouac, J.-P. (2015) From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annual Reviews of Earth and Planetary Sciences 43, 233-271. Avouac, J.-P., Meng, L., Wei, S., Wang, T., and Ampuero, J. P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 8(9), 708–711. https://doi.org/10.1038/ngeo2518 Bai, K., and J.-P. Ampuero (2017), Effect of seismogenic depth and background stress on physical limits of earthquake rupture across fault step overs, Journal of Geophysical Research, 122, 10,280-210,298, doi:10.1002/2017/2017JB014848. Bakun, W.H., B. Aagaard, B. Dost, W.L. Ellsworth, J.L. Hardebeck, R.A. Harris, C. Ji, M.J.S. Johnston, J. Langbein, J.J. Lienkaemper, A.J. Michael, J.R. Murray, R.M. Nadeau, P.A. Reasenberg, M.S. Reichle, E. A. Roeloffs, A. Shakal, R.W., Simpson, and F. Waldhauser (2005), Implications for prediction and hazard assessment from the 2004 Parkfield earthquake, Nature 437, 969-974, doi:10.1038/nature04067. Bakun, W. H., and T. V. McEvilly (1984). Recurrence Models and Parkfield, California, Earthquakes. Journal of Geophysical Research 89 (B5): 3051–58. Bakhshian, S. & Sahimi, M. (2017), Adsorption-induced swelling of porous media. Int. J. Greenhouse Gas Control 57, 1– 13. Baltay A. S., Beroza, G. C., and S. Ide (2014). Radiated energy of great earthquakes from teleseismic empirical Green’s function deconvolution. Pure and Applied Geophysics, 171(10):2841-62. Barall, M. (2009). A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault, Geophysical Journal International, Volume 178, Issue 2, 1, Pages 845–859, https://doi.org/10.1111/j.1365-246X.2009.04190.x Barbot, S., (2018). Asthenosphere flow modulated by megathrust earthquake cycles. Geophysical Research Letters 45, 6018–6031. https://doi.org/10.1029/2018GL078197. Barbot, S., Fialko, Y., and Y., Bock, (2009). Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress- driven creep on a fault with spatially variable rate-state friction parameters. Journal of Geophysical Research: Solid Earth, 114(B7). Barbot, S, Fialko Y.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages65 Page
-
File Size-