ESE 531: Digital Signal Processing Lecture Outline Impulse Invariance

ESE 531: Digital Signal Processing Lecture Outline Impulse Invariance

Lecture Outline ESE 531: Digital Signal Processing ! DT processing of CT signals " Impulse Invariance ! CT processing of DT signals (why??) Lec 9: February 9th, 2017 ! Downsampling CT Processing, Downsampling/Upsampling ! Upsampling Penn ESE 531 Spring 2017 - Khanna Penn ESE 531 Spring 2017 - Khanna 2 Discrete-Time Processing of Continuous Time Impulse Invariance ! Want to implement continuous-time system in x[n] y[n] discrete-time T T ! If xc(t) is bandlimited by π/T " I.e Xc(jΩ) = 0 for |Ω|> π/T ! then, ⎧ jω Yr ( jΩ) ⎪ H(e ) Ω < π / T = H ( jΩ) = ⎨ ω=ΩT X ( jΩ) eff c ⎩⎪ 0 else Penn ESE 531 Spring 2017 - Khanna 3 Penn ESE 531 Spring 2017 - Khanna 4 Impulse Invariance Impulse Invariance ! With Hc(jΩ) bandlimited, choose ! With Hc(jΩ) bandlimited, choose j ω j ω H(e ω ) = H ( j ), ω < π H(e ω ) = H ( j ), ω < π c T c T ! With the further requirement that T be chosen such ! With the further requirement that T be chosen such that that Hc ( jΩ) = 0, Ω ≥ π / T Hc ( jΩ) = 0, Ω ≥ π / T h[n] = Thc (nT ) Penn ESE 531 Spring 2017 - Khanna 5 Penn ESE 531 Spring 2017 - Khanna 6 1 Impulse Invariance Frequency Domain Analysis ! Let, h[n] = hc (nT ) ! If sampling at Nyquist Rate then ∞ j 1 ⎡ ⎛ω 2πk ⎞⎤ H(e ω ) H j = ∑ c ⎢ ⎜ − ⎟⎥ T k=−∞ ⎣ ⎝T T ⎠⎦ jΩT X s (e ) ω = ΩT Ω s ⋅T = π 2 Penn ESE 531 Spring 2017 - Khanna 7 Penn ESE 531 Spring 2017 - Khanna 8 Impulse Invariance Impulse Invariance ! Let, ! Let, Hc ( jΩ) = 0, Ω ≥ π / T Hc ( jΩ) = 0, Ω ≥ π / T h[n] = hc (nT ) h[n] =Th c (nT ) ! If sampling at Nyquist Rate then ! If sampling at Nyquist Rate then ∞ ∞ j 1 ⎡ ⎛ω 2πk ⎞⎤ j T1 ⎡ ⎛ω 2πk ⎞⎤ H(e ω ) H j H(e ω ) H j = ∑ c ⎢ ⎜ − ⎟⎥ = ∑ c ⎢ ⎜ − ⎟⎥ T k=−∞ ⎣ ⎝T T ⎠⎦ T k=−∞ ⎣ ⎝T T ⎠⎦ jω 1 ⎛ ω ⎞ jω T1 ⎛ ω ⎞ H(e ) = Hc ⎜ j ⎟, |ω|<π H(e ) = Hc ⎜ j ⎟, |ω|<π T ⎝ T ⎠ T ⎝ T ⎠ Penn ESE 531 Spring 2017 - Khanna 9 Penn ESE 531 Spring 2017 - Khanna 10 Impulse Invariance Example: DT Lowpass Filter ! Want to implement continuous-time system in ! We wish to implement a lowpass filter with cutoff discrete-time frequency Ωc on continuous time signal in discrete time with the following system h[n] = Thc (nT ) Penn ESE 531 Spring 2017 - Khanna 11 Penn ESE 531 Spring 2017 - Khanna 12 2 Impulse Invariance Continuous-Time Processing of Discrete-Time ! Want to implement continuous-time system in ! Useful to interpret DT systems with no simple discrete-time interpretation in discrete time h[n] = Thc (nT ) Penn ESE 531 Spring 2017 - Khanna 13 Penn ESE 531 Spring 2017 - Khanna 14 Continuous-Time Processing of Discrete-Time Continuous-Time Processing of Discrete-Time ⎧ j T ⎧ j T ⎪ TX (e Ω ) Ω < π / T ⎪ TX (e Ω ) Ω < π / T X c ( jΩ) = ⎨ X c ( jΩ) = ⎨ ⎩⎪ 0 else ⎩⎪ 0 else Also bandlimited Yc ( jΩ) = Hc ( jΩ)X c ( jΩ) Penn ESE 531 Spring 2017 - Khanna 15 Penn ESE 531 Spring 2017 - Khanna 16 Continuous-Time Processing of Discrete-Time Continuous-Time Processing of Discrete-Time jω 1 Y ( j ) H ( j )X ( j ) Y ( j ) H ( j )X ( j ) Y (e ) = Yc ( jΩ) c Ω = c Ω c Ω c Ω = c Ω c Ω T Ω=ω/T 1 ∞ 1 Y (e jω ) = Y ⎡ j Ω− kΩ ⎤ = Y ( jΩ) T ∑ c ⎣ ( s )⎦ T c k=−∞ Ω=ω/T Ω=ω/T Penn ESE 531 Spring 2017 - Khanna 17 Penn ESE 531 Spring 2017 - Khanna 18 3 Continuous-Time Processing of Discrete-Time Example jω 1 Y ( j ) H ( j )X ( j ) Y (e ) = Yc ( jΩ) c Ω = c Ω c Ω T Ω=ω/T 1 Y (e jω ) = H ( jΩ) X ( jΩ) T c Ω=ω/T c Ω=ω/T 1 = H ( jΩ) (TX (e jω )) ω < π T c Ω=ω/T H(e jω ) Penn ESE 531 Spring 2017 - Khanna 19 Penn ESE 531 Spring 2017 - Khanna 20 Example: Non-integer Delay Example: Non-integer Delay ! What is the time domain operation when Δ is non- ! What is the time domain operation when Δ is non- integer? I.e Δ=1/2 integer? I.e Δ=1/2 δ[n]↔1 − jωnd δ[n − nd ]↔ e Penn ESE 531 Spring 2017 - Khanna 21 Penn ESE 531 Spring 2017 - Khanna 22 Example: Non-integer Delay Example: Non-integer Delay ! The block diagram is for interpretation/analysis only yc (t) = xc (t −TΔ) Penn ESE 531 Spring 2017 - Khanna 23 Penn ESE 531 Spring 2017 - Khanna 24 4 Example: Non-integer Delay Example: Non-integer Delay ! The block diagram is for interpretation/analysis ! Delay system has an impulse response of a sinc with only a continuous time delay y[n] = y (nT ) = x (nt −TΔ) yc (t) = xc (t −TΔ) c c ⎛t − kT −TΔ ⎞ = x[k]sinc⎜ ⎟ ∑ T k ⎝ ⎠ t=nT = ∑x[k]sinc(n − k − Δ) k Penn ESE 531 Spring 2017 - Khanna 25 Penn ESE 531 Spring 2017 - Khanna 26 Example: Non-integer Delay Downsampling ! Delay system has an impulse response of a sinc with ! Similar to C/D conversion a continuous time delay " Need to worry about aliasing " Use anti-aliasing filter to mitigate effects ! If your discrete time signal is finely sample almost like a CT signal " Downsampling is just like sampling (C/D conversion) Penn ESE 531 Spring 2017 - Khanna 27 Penn ESE 531 Spring 2017 - Khanna 28 Downsampling Downsampling ! Definition: Reducing the sampling rate by an integer number Penn ESE 531 Spring 2017 - Khanna 29 Penn ESE 531 Spring 2017 - Khanna 30 5 Downsampling Downsampling jω jω ! Want to relate Xd(e ) to X(e ) not Xc(jΩ) ! k=rM+i " i = 0, 1, …, M-1 " r = -∞, ..., ∞ ! Separate sum into two sums—fine sum and coarse sum (i.e like counting minutes within hours) Penn ESE 531 Spring 2017 - Khanna 31 Penn ESE 531 Spring 2017 - Khanna 32 Downsampling Downsampling Penn ESE 531 Spring 2017 - Khanna 33 Penn ESE 531 Spring 2017 - Khanna 34 Downsampling Example Penn ESE 531 Spring 2017 - Khanna 35 Penn ESE 531 Spring 2017 - Khanna 36 6 Example Example 4π 2π 4π Penn ESE 531 Spring 2017 - Khanna 37 Penn ESE 531 Spring 2017 - Khanna 38 Example Example 6π 2π 6π Penn ESE 531 Spring 2017 - Khanna 39 Penn ESE 531 Spring 2017 - Khanna 40 Example Example 2π 4π 6π Penn ESE 531 Spring 2017 - Khanna 41 Penn ESE 531 Spring 2017 - Khanna 42 7 Example Upsampling ! Much like D/C converter ! Upsample by A LOT # almost continuous ! Intuition: " Recall our D/C model: x[n] # xs(t)#xc(t) " Approximate “xs(t)” by placing zeros between samples " Convolve with a sinc to obtain “xc(t)” Penn ESE 531 Spring 2017 - Khanna 43 Penn ESE 531 Spring 2017 - Khanna 44 Upsampling Upsampling ! Definition: Increasing the sampling rate by an integer number x[n] = xc (nT ) xi[n] = xc (nT ') xi[n] Penn ESE 531 Spring 2017 - Khanna 45 Penn ESE 531 Spring 2017 - Khanna 46 Upsampling Frequency Domain Interpretation Penn ESE 531 Spring 2017 - Khanna 47 Penn ESE 531 Spring 2017 - Khanna 48 8 Frequency Domain Interpretation Frequency Domain Interpretation Penn ESE 531 Spring 2017 - Khanna 49 Penn ESE 531 Spring 2017 - Khanna 50 Frequency Domain Interpretation Example Penn ESE 531 Spring 2017 - Khanna 51 Penn ESE 531 Spring 2017 - Khanna 52 Example Example Penn ESE 531 Spring 2017 - Khanna 53 Penn ESE 531 Spring 2017 - Khanna 54 9 Example Example Penn ESE 531 Spring 2017 - Khanna 55 Penn ESE 531 Spring 2017 - Khanna 56 Example Big Ideas ! DT processing of CT signals " Impulse Invariance to design DT systems for CT signals ! CT processing of DT signals " Allows for interpretation of DT systems ! Downsampling " Like a C/D converter ! Upsampling " Like a D/C converter Penn ESE 531 Spring 2017 - Khanna 57 Penn ESE 531 Spring 2017 - Khanna 58 Admin ! HW 3 due Friday ! HW 4 posted after class Penn ESE 531 Spring 2017 - Khanna 59 10 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us