Spectroscopic Ellipsometry

Spectroscopic Ellipsometry

Spectroscopic Ellipsometry: What it is, what it will do, and what it won’t do by Harland G. Tompkins • Introduction • Fundamentals • Anatomy of an ellipsometric spectrum • Analysis of an ellipsometric spectrum • What you can do, and what you can’t do 1-1 H. Tompkins Ellipsometry Introduction Perspective • Spectroscopic Ellipsometry is an optical technique used for analysis and metrology • A light beam is reflected off of the sample of interest • The light beam is then analyzed to see what the sample did to the light beam • We then draw conclusions about the sample • thickness • optical constants • microstructure • Model based •allmeasurement techniques are model based 1-2 H. Tompkins Ellipsometry Fundamentals Polarized Light • The Name • “Ellipsometry” comes from “elliptically polarized light” • better name would be “polarimetry” + • Linearly Polarized = • combining two light beams in phase, gives linearly polarized light 1-3 H. Tompkins Ellipsometry Fundamentals Polarized Light (continued) • Elliptically Polarized • combining two light beams + out of phase, gives elliptically polarized light • Two ways = • pass through a retarder • reflect off a surface • absorbing material • substrate with film 1-4 H. Tompkins Ellipsometry Fundamentals Laws of Reflection and Refraction • Reflection φ = φ i r • Refraction (Snell’s law) • for dielectric, i.e. k = 0 n sin φ = n sin φ 1 1 2 2 • in general Ñ sin φ = Ñ sin φ 1 1 2 2 • sine function is complex • corresponding complex cosine function 2 φ + 2 φ = sin 2 cos 2 1 1-5 H. Tompkins Ellipsometry Fundamentals Reflections (orientation) • Electric Field Vector • Plane-of-Incidence • incoming Ep • normal • outgoing Plane of Incidence Es • s-waves and p-waves • “senkrecht” and “parallel” 1-6 H. Tompkins Ellipsometry Fundamentals Equations of Fresnel • Fresnel reflection coefficients, r p r s • complex numbers 12 12 • ratio of Amplitude of outgoing to incoming • different for p-waves and s-waves φ − φ p Ñ cos Ñ cos φ − φ = 2 1 1 2 s Ñ 1 cos 1 Ñ 2 cos 2 r12 r = Ñ cos φ + Ñ cos φ 12 φ + φ 2 1 1 2 Ñ 1 cos 1 Ñ 2 cos 2 • Reflectance ℜ • ratio of Intensity • square of Amplitude • for a single interface 2 ℜ p = p 2 ℜs = s r12 r12 1-7 H. Tompkins Ellipsometry Fundamentals Brewster Angle (for dielectrics) • r s always negative and non-zero • r p passes through zero •ℜ p goes to zero • The Brewster Angle • sometimes called the principal angle, polarizing angle • Reflected light is s-polarized • ramifications n φ = 2 • tan B n1 φ = φ • cos 2 sin B 1-8 H. Tompkins Ellipsometry Fundamentals “Brewster” Angle, for metals • if k is non-zero, r s and r p are complex • cannot plot r s and r p vs angle of incidence • However, we can still plot the Reflectance •ℜ p has a minimum, although not zero • Actually called the “principal angle” 1-9 H. Tompkins Ellipsometry Fundamentals Reflections with Films φ • Ellipsometry, 1 • Amplitude, phase of outgoing vs Ñ1 incoming φ Ñ 2 d • Reflectometry 2 • Intensity of outgoing vs incoming Ñ3 φ • Total Reflection Coefficient 3 • corresponds to Fresnel Coefficients • complex number rp + r p exp(−j2β) r s + rs exp(−j2β) Rp = 12 23 Rs = 12 23 + p p − β + s s − β 1 r12 r23 exp( j2 ) 1 r12r23 exp( j2 ) d • β is phase change from top to β = 2π Ñ cosφ bottom of film λ 2 2 1-10 H. Tompkins Ellipsometry Fundamentals Ellipsometry and Reflectometry definitions 2 2 • Reflectance ℜp = Rp ℜs = Rs • Delta, the phase difference induced by the reflection •if δ is the phase difference before, and δ the phase difference after the 1 ∆ δ δ 2 reflection then = 1 - 2 • ranges from zero to 360º (or -180 to +180º ) • Psi, the ratio of the amplitude diminutions Rp • ranges from zero to 90º tan Ψ= R s • The Fundamental Equation of Ellipsometry p ∆ j∆ Rp ρ = R ρ = Ψ j tan Ψ = s tan e e s R R 1-11 H. Tompkins Ellipsometry Fundamentals More Perspective • Ellipsometers measure ∆ and Ψ (sometimes only cos ∆ ) • Properties of the probing beam • Quantities such as thickness and index of refraction are calculated quantities, based on a model. • Properties of the sample • Values of ∆ and Ψ are always correct • Whether thickness and index are correct depend on the model • Both precision and accuracy for ∆ and Ψ • Precision for thickness • Accuracy, ??? 1-12 H. Tompkins Ellipsometry The Anatomy of an Ellipsometric Spectrum Examples 180 150 film-free • Thin oxides on Silicon 10 Å 25 Å 120 60 Å 100 Å 90 50 ( ° ) ∆ 60 40 film-free 10 Å 25 Å 30 60 Å 30 100 Å 0 ( ° ) 200 400 600 800 1000 20 Ψ Wavelength (nm) 10 0 200 400 600 800 1000 Wavelength (nm) Si Optical Constants 7.0 6.0 6.0 5.0 n Ext. Coeff. ' k SiO2 Optical Constants 1.58 0.10 ' 5.0 4.0 n 1.56 n 4.0 3.0 0.08 Ext. Coeff. ' k ' 1.54 n Index ' Index 3.0 2.0 0.06 k ' 2.0 1.0 1.52 0.04 1.50 1.0 0.0 ' Index k 200 400 600 800 1000 ' 0.02 Wavelength (nm) 1.48 1.46 0.00 200 400 600 800 1000 Wavelength (nm) 1-13 H. Tompkins Ellipsometry The Anatomy of an Ellipsometric Spectrum Examples • Thicker oxide on Silicon 90 360 2200 Å 2500 Å 60 240 2200 Å 2500 Å 30 120 180 in degrees in degrees ∆ Ψ 150 0 0 200 400 600 800 1000 200 400 600 120800 1000 2200 Å 2500 Å Wavelength (nm) Wavelength (nm)∆ 90 60 30 200 400 600 800 1000 Si Optical Constants 7.0 6.0 Wavelength (nm) 6.0 5.0 n Ext. Coeff. ' k ' 5.0 4.0 n 4.0 3.0 SiO2 Optical Constants 1.58 0.10 Index ' Index 3.0 2.0 k ' 1.56 n 0.08 Ext. Coeff. ' 2.0 1.0 k ' 1.54 1.0 0.0 n 0.06 200 400 600 800 1000 1.52 Wavelength (nm) 0.04 1.50 Index ' Index k ' 1.48 0.02 1.46 0.00 200 400 600 800 1000 Wavelength (nm) 1-14 H. Tompkins Ellipsometry The Anatomy of an Ellipsometric Spectrum Examples • Polysilicon on oxide on silicon 3 srough 25 Å 2 polysilicon 3000 Å 1 sio2 1000 Å 0 si 1 mm 180 90 120 60 ∆ 60 30 in degrees Ψ 0 200 400 600 800 1000 0 200 400 600 800 1000 Wavelength (nm) Wavelength (nm) polysilicon OC's 6.0 5.0 5.0 4.0 Ext. Coeff. ' ' n 4.0 3.0 3.0 2.0 Index ' Index n k 2.0 k 1.0 ' 1.0 0.0 200 400 600 800 1000 Wavelength (nm) 1-15 H. Tompkins Ellipsometry The Anatomy of an Ellipsometric Spectrum Examples 1 cr 300 Å • Thin chromium on silicon 0 si 1 mm 180 60 film-free 50 Å 120 40 100 Å 200 Å film-free 300 Å 50 Å Ψ 60 100 Å 20 in degrees 200 Å ∆ 300 Å 0 0 300 400 500 600 700 800 300 400 500 600 700 800 Wavelength (nm) Wavelength (nm) Chromium OC's 5.0 4.5 4.2 4.0 Ext. Coeff. ' 3.9 ' n 3.0 n 3.6 • caveats k 2.0 3.3 Index ' Index 3.0 k 1.0 ' 2.7 0.0 2.4 300 400 500 600 700 800 Wavelength (nm) 1-16 H. Tompkins Ellipsometry Analysis of an Ellipsometric Spectrum Determining Film properties from SE spectra • Except for substrates, we cannot do a direct calculation What Ellipsometry Measures: What we are interested in: Film Thickness Refractive Index Psi (Ψ) Surface Roughness ∆ Interfacial Regions Delta ( ) Composition Crystallinity Anisotropy Desired information must be extracted Through a model-based analysis using Uniformity equations to describe interaction of light and materials 1-17 H. Tompkins Ellipsometry Analysis of an Ellipsometric Spectrum How we analyze data: 1-18 H. Tompkins Ellipsometry Analysis of an Ellipsometric Spectrum Building the model • Optical Constants • Tabulated list • when OC’s are very well known • single-crystal 1 cauchy 0 Å 0 si 1 mm • thermal oxide of Si, LPCVD nitride • Dispersion Equation • Cauchy equation • dielectrics, primarily • empirical • not K-K consistent λ = + Bn + Cn n( ) An λ2 λ4 1-19 H. Tompkins Ellipsometry Analysis of an Ellipsometric Spectrum Building the model • Optical Constants 2 polysilicon 0 Å • Dispersion Equation 1 sio2 1000 Å • Oscillator equation 0 si 1 mm 6.0 5.0 5.0 ' 4.0 k ' 4.0 n 3.0 3.0 2.0 Index ' Index 2.0 1.0 Ext. Coeff. ' 1.0 0.0 0.0 0 300 600 900 1200 1500 1800 0 300 600 900 1200 1500 1800 Wavelength (nm) Wavelength (nm) 5.0 4.0 4.0 30 20 3.0 3.0 ' 25 ' n 2.0 k ' 15 2.0 ' 1.0 20 1.0 10 0.0 2 0 300 600 900 1200 1500 1800 15 0.0 ε 0 300 600 900 1200 1500 1800 1 5 Wavelength (nm) Wavelength (nm) ε 10 0 5 -5 0 -10 0 2 4 6 8 10 0 2 4 6 8 10 Photon Energy (eV) Photon Energy (eV) 1-20 H. Tompkins Ellipsometry Analysis of an Ellipsometric Spectrum Building the model • Optical Constants 3 srough 0 Å •Mixture 2 polysilicon 2000 Å 1 sio2 1000 Å • EMA, effective medium 0 si 1 mm approximation • Graded Layers • Anisotropic Layers • Superlattice 1-21 H.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us