Coll055-Endmatter.Pdf

Coll055-Endmatter.Pdf

http://dx.doi.org/10.1090/coll/055 America n Mathematica l Societ y Colloquiu m Publication s Volum e 55 Noncommutativ e Geometry , Quantu m Field s an d Motive s Alai n Conne s Matild e Marcoll i »AMS AMERICAN MATHEMATICA L SOCIET Y öUöi HINDUSTA N SJU BOOKAGENC Y Editorial Boar d Paul J . Sally , Jr., Chai r Yuri Mani n Peter Sarna k 2000 Mathematics Subject Classification. Primar y 58B34 , 11G35 , 11M06 , 11M26 , 11G09 , 81T15, 14G35 , 14F42 , 34M50 , 81V25 . This editio n i s published b y th e America n Mathematica l Societ y under licens e fro m Hindusta n Boo k Agency . For additiona l informatio n an d Update s o n thi s book , visi t www.ams.org/bookpages/coll-55 Library o f Congres s Cataloging-in-Publicatio n Dat a Connes, Alain . Noncommutative geometry , quantu m fields an d motive s / Alai n Connes , Matild e Marcolli , p. cm . — (Colloquiu m publication s (America n Mathematica l Society) , ISS N 0065-925 8 ; v. 55 ) Includes bibliographica l reference s an d index . ISBN 978-0-8218-4210- 2 (alk . paper ) 1. Noncommutativ e differentia l geometry . 2 . Quantu m field theory , I . Marcolli , Matilde . IL Title . QC20.7.D52C66 200 7 512/.55—dc22 200706084 3 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , or multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e Hindusta n Boo k Agency . Request s fo r permissio n fo r commercial use of material should be addressed to the Hindustan Boo k Agency (India) , P 1 9 Green Park Extention , Ne w Delhi 11 0 016, India. Request s can als o be made by e-mail to hba@vsnl. com. © 200 8 by the Hindusta n Boo k Agency . Al l rights reserved . Printed i n the Unite d State s o f America . @ Th e pape r use d i n this boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 1 3 1 2 1 1 1 0 0 9 0 8 To our love d ones fo r thei r patienc e This page intentionally left blank Contents Preface xii i Chapter 1 . Quantu m fields, noncommutative Spaces , and motive s 1 1. Introductio n 1 2. Basic s o f perturbative QF T 7 2.1. Lagrangia n an d Hamiltonia n formalism s 8 2.2. Lagrangia n an d the Feynma n integra l 1 0 2.3. Th e Hamiltonia n an d canonica l quantizatio n 1 1 2.4. Th e simples t exampl e 1 3 2.5. Green' s function s 1 7 2.6. Wic k rotation an d Euclidea n Green' s function s 1 8 3. Feynma n diagram s 2 2 3.1. Th e simples t cas e 2 3 3.2. Th e origin s o f renormalization 2 7 3.3. Feynma n graph s an d rule s 3 1 3.4. Connecte d Green' s function s 3 5 3.5. Th e effectiv e actio n an d one-particl e irreducibl e graph s 3 7 3.6. Physicall y observabl e parameters 4 1 3.7. Th e physic s ide a o f renormalization 4 3 4. Dimensiona l regularizatio n 4 6 5. Th e grap h b y grap h metho d o f Bogoliubov-Parasiuk-Hepp - Zimmermann 5 2 5.1. Th e simples t exampl e o f subdivergence 5 4 5.2. Superficia l degre e o f divergence 5 8 5.3. Subdivergence s an d preparatio n 5 9 6. Th e Connes-Kreime r theor y o f perturbative renormalizatio n 6 6 6.1. Commutativ e Hop f algebra s an d affin e grou p scheme s 6 7 6.2. Th e Hop f algebr a o f Feynman graphs : discret e part 7 1 6.3. Th e Hop f algebr a o f Feynman graphs : fül l structur e 7 8 6.4. BPH Z a s a Birkhof f factorizatio n 8 1 6.5. Diffeographism s an d diffeomorphism s 8 8 6.6. Th e renormalizatio n grou p 8 9 7. Renormalizatio n an d the Riemann-Hilbert correspondenc e 9 5 7.1. Counterterm s an d time-ordered exponential s 9 6 7.2. Fia t equisingula r connection s 10 3 7.3. Equivarian t principa l bundle s and the grou p G * = G x i Gm 11 4 CONTENTS 7.4. Tannakia n categorie s an d affin e grou p scheme s 11 9 7.5. Differentia l Galoi s theor y an d th e loca l Riemann-Hilber t correspondence 12 3 7.6. Universa l Hop f algebr a an d th e Riemann-Hilber t correspondence 12 8 8. Motive s i n a nutshell 13 7 8.1. Algebrai c varieties an d motive s 13 7 8.2. Pur e motive s 14 6 8.3. Mixe d motive s 15 1 8.4. Mixe d Hodg e structures 15 6 8.5. Tät e motives , periods, an d quantu m fields 15 9 9. Th e Standar d Mode l o f elementary particle s 16 0 9.1. Particle s an d interaction s 16 2 9.2. Symmetrie s 16 3 9.3. Quar k mixing : th e CK M matrix 16 6 9.4. Th e Standar d Mode l Lagrangian 16 6 9.5. Quantu m level : anomalies , ghosts , gauge fixing 17 0 9.6. Massiv e neutrinos 17 4 9.7. Th e Standard Mode l minimally couple d to gravity 17 9 9.8. Highe r derivativ e terms i n gravity 18 3 9.9. Symmetrie s a s diffeomorphisms 18 4 10. Th e framewor k o f (metric ) noncommutativ e geometr y 18 6 10.1. Spectra l geometr y 18 7 10.2. Spectra l triples 19 0 10.3. Th e rea l part o f a real spectral tripl e 19 2 10.4. Hochschil d an d cycli c cohomolog y 19 3 10.5. Th e loca l index cocycl e 19 8 10.6. Positivit y i n Hochschild cohomolog y an d Yang-Mill s actio n 20 1 10.7. Cycli c cohomolog y an d Chern-Simon s actio n 20 2 10.8. Inne r fluctuations o f the metri c 20 3 11. Th e spectra l actio n principl e 20 6 11.1. Term s i n A 2 i n the spectra l actio n an d scala r curvatur e 21 0 11.2. Seeley-DeWit t coefficient s an d Gilkey' s theorem 21 6 11.3. Th e generalize d Lichnerowic z formul a 21 7 11.4. Th e Einstein-Yang-Mill s Syste m 21 8 11.5. Scal e independent term s i n the spectra l actio n 22 3 11.6. Spectra l actio n wit h dilato n 22 7 12. Noncommutativ e geometr y an d the Standar d Mode l 23 0 13. Th e finite noncommutativ e geometr y 23 4 13.1. Th e subalgebr a an d the orde r on e condition 23 8 13.2. Th e bimodul e HF an d fermion s 24 0 13.3. Unimodularit y an d hypercharge s 24 3 13.4. Th e Classificatio n o f Dirac Operator s 24 6 13.5. Modul i spac e o f Dirac Operator s and Yukaw a parameters 25 2 13.6. Th e intersectio n pairin g o f the finite geometr y 25 5 CONTENTS vi i 14. Th e product geometr y 25 7 14.1. Th e rea l part o f the product geometr y 25 8 15. Boson s a s inner fluctuations 25 9 15.1. Th e loca l gauge transformations 25 9 15.2. Discret e part o f the inne r fluctuations an d the Higg s field 26 0 15.3. Power s o f D&'V 26 2 15.4. Continuou s part o f the inne r fluctuations an d gaug e bosons 26 5 15.5. Independenc e o f the boso n fields 26 9 15.6. Th e Dira c Operato r an d it s Squar e 26 9 16. Th e spectral actio n an d the Standar d Mode l Lagrangian 27 1 16.1. Th e asymptoti c expansio n o f the spectra l actio n onMxF 27 1 16.2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    62 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us