______AUTHOR INDEX ______ a space; Homology group; Infinite­ Arellano, E. Ramirez de see: Ramirez de form in logarithms; Siegel theorem; dimensional space; Local decompo­ Arellano, E. Transcendental number sition; Metrizable space; Pontryagin __A __ Argand, J .R. see: Arithmetic; Complex Ball, R. see: Helical calculus duality; Projection spectrum; Suslin number; Imaginary number Balusabramanian, R. see: Waring prob­ theorem; Topological space; Width Aristotle see: Modal logic; Space-time lem Abel, N.H. see: Abel differential Alexander, J.W. see: Alexander dual­ Arkhangel'skil, A.V. see: Feathering Banach, S. see: Area; Banach indica­ equation; Abel-Goncharov prob­ ity; Alexander invariants; Duality; Arno I'd, V.I. see: Composite function; trix; Banach-Mazur functional; Ba­ lem; Abel problem; Abel theorem; Homology group; Jordan theorem; Quasi-periodic motion nach space; Banach-Steinhaus the­ Abel transformation; Abelian group; Knot theory; Manifold; Pontryagin Arsenin, V. Ya. see: Descriptive set the­ orem; Completely-continuous oper­ Abelian integral; Abelian variety; duality; Reaction-diffusion equation; ory ator; Contracting-mapping princi­ Algebra; Algebraic equation; Alge­ Topology of imbeddings Artin, E. see: Abstract algebraic ge­ ple; Franklin system; Hahn-Banach braic function; Algebraic geometry; Alexandrov, A.B. see: Boundary prop­ ometry; Algebra; Algebraic number theorem; Lacunary system; Linear Binomial series; Convergence, types erties of analytic functions theory; Alternative rings and alge­ operator; Luzin N -property; Non­ of; Elliptic function; Finite group; Alling, N.L. see: Surreal numbers bras; Commutative algebra; Con­ differentiable function; Nuclear op­ Galois theory; Group; Interpola­ Almgren, F.J. see: Plateau problem, gruence modulo a prime number; erator; Open-mapping theorem; Or­ tion; Inversion of an elliptic integral; multi-dimensional Divisorial ideal; Foundations of ge­ thogonal series; Tonelli plane vari­ Jacobi elliptic functions; Liouville­ Alvarez-Gaume, L. see: Index formulas ometry; Galois cohomology; Matrix ation; Tonelli theorem; Topological Ostrogradski formula; Period map­ Ambartsumyan, VA. see: Discrete algebra; Projective algebra; Reci­ tensor product; Variation of a map­ ping; Permutation of a set; Series; space-time; Invariant imbedding procity laws; Rings and algebras; ping Umbral calculus; Volterra equation; Ambartzumian, R.V. see: Integral geom­ Wedderburn-Artin theorem; Zeta­ Banchoff, T. see: Tight and taut immer­ Weierstrass elliptic functions etry function sions Abhyankar, S.S. see: Local uniformiza- Amitsur, S. see: Division algebra; Rad­ Arlin, M. see: Algebraic space; Topos; Barbier, E. see: Barbier theorem tion ical; Radical of rings and algebras Zeta-function Bari, N .K. see: Composite function; Adams, J. see: Perturbation theory Ampere, A.M. see: Cybernetics; Arzela, C. see: Arzela variation Metric theory offunctions; Riesz sys­ Adams, J.C. see: Adams method Monge-Ampere equation Askey, R. see: Bieberbach conjecture tem; Trigonometric series; Unique­ Adams, J.F. see: Homotopy group; ,\- Anderson, T.W. see: Cramer-von Mises Astarov, I. see: Elements of Euclid ness set ring test Aliyah, M.F. see: C* -algebra; Chern Barie!, D. see: D-module Addison, J.W. see: Descriptive set the­ Andreev, K.A. see: Gram determinant class; ,\-ring; Lacuna; Vector bundle, Barratt, M. see: Kervaire invariant ory Andreotti, A. see: Schottky problem algebraic Barrett, J.A. see: Walsh system Adleman, L.M. see: Cryptography; Andronov, A.A. see: Andronov-Witt Aubin, T. see: Kahler manifold Barrow, I. see: Finite-difference calcu­ Cryptology; Fermat great theorem theorem; Auto-oscillation; Auto­ Auslander, M. see: Commutative alge­ lus Adler, A. see: Geometric constructions matic control theory; Qualitative bra; Representation of an associative Bartlett, M.S. see: Bartlett test; Ado, 1.0. see: Lie group theory of differential equations; algebra Behrens-Fisher problem Adyan, S.I. see: Burnside problem; Rough system; Stability theory Bateman, H. see: Bateman function; Group calculus Ax, J. see: Model theory Anger, C. T. see: Anger function Bateman method; Integral equation Agmon, S. see: Tricomi problem Azizov, T.Ya. see: Krein space Anick, D. see: Local ring Baudet, A. see: van der Waerden theo­ Agnesi, M. see: Witch of Agnesi Anosov, D.V. see: Y-system rem Ahlfors, L. V. see: Analytic capacity; Antoine, L. see: Topology ofimbeddings Bauer, H. see: Perron integral; Potential Asymptotic value; Extremal met­ theory, abstract ric, method of the; Quasi-conformal Apollonius of Perga see: Apollo- Baumslag, G. see: Non-Hopf group mapping; Removable set nius problem; Cartesian coordi­ __ B __ Bautista, R. see: Representation of an Airy, G.B. see: Airy equation; Cartog- nates; Conic sections; Coordinates; associative algebra raphy, mathematical problems in Elements of Euclid Aitken, A.C. see: Aitken scheme Appel, K. see: Graph, planar Bach, R. see: Bivector space Bayes, T. see: Bayes formula al' -Kashi see: Number; Pascal triangle Appell, P.E. see: Appell equations; Ap­ Bachelier, L. see: Einstein-Smolu- Bazilevich, I.E. see: Bieberbach conjec- Al-Khwarizmi, Mohammed see: Alge- pell polynomials; Appell transforma­ chowski equation; Markov process ture; Rotation theorems bra; Arithmetic tion; Variational principles of classi­ Bachet, C.G. see: Diophantine equa­ Beauville, A. see: Schottky problem Albanese, G. see: Albanese variety cal mechanics tions Bebutov, M. V. see: Saddle at infinity Albert, A.A. see: Brauer group; Deriva­ Arakelov, S. Yu. see: Finiteness theo­ Bachmann, F. see: Foundations of ge­ Beck, A. see: Search problem (linear) tion in a ring; Division algebra; Lie­ rems; Mordell conjecture ometry Behnke, H. see: Analytic space admissible algebra Arakelyan, N.U. see: Value-distribution Baer, R. see: Baer multiplication; Ex­ Behrens, W.U. see: Behrens-Fisher Aleksandrov, A.O. see: Convex surface; theory tension of a group; Heaps and semi­ problem Discrete group of transformations; Araki, S. see: Cobordism heaps Beilinson, A. see: Hodge conjecture Geometry in the large; Interior ge­ Arbarello, E. see: Schottky problem Baily jr., W.L. see: Automorphic func­ Beilinson, P. see: Zeta-function ometry; Isometric immersion; Min­ Arbuthnot!, J. see: Non-parametric tion Bell, E.T. see: Umbral calculus kowski problem; Tight and taut im­ methods in statistics Baire, R. see: Axiomatic set theory; Bellman, R. see: Bellman-Harris pro- mersions; Weyl problem Archimedes see: Archimedean axiom; Baire classes; Baire theorem; De­ cess; Continuation method (to a pa­ Aleksandrov, P.S. see: A-operation; Archimedean spiral; Cartesian co­ scriptive set theory; Functions of a rametrized family); Dynamic pro­ Aleksandrov . co!"pactification; ordinates; Convergence, types of; real variable, theory of; Metric the­ gramming; Hamilton-Jacobi theory; Alexander duahty; Cech cohomol­ Element.s of Euclid; Exhaustion, ory of functions Search problem (linear) ogy; Compact space; Compactifica­ method of; Indivisibles, method Baker, A. see: Analytic number the­ Beltrami, E. see: Beltrami coordi­ tion; Covering (of a set); Descriptive of; Infinitesimal calculus; Integral ory; Diophantine approximation, nates; Beltrami-Enneper theorem; set theory; Duality; Dyadic com­ calculus; Mathematical analysis; problems of effective; Diophantine Beltrami interpretation; Beltrami pactum; Functions of a real variable, Mathematical symbols; Number; approximations; Diophantine equa­ method; Differential geometry of theory of; Homological dimension of Quantity; Semi-regular polyhedra tions; Diophantine geometry; Linear manifolds; Differential parameter; 717 BELTRAMI, E. Hilbert invariant integral; Laplace­ Bertini, E. see: Algebraic geometry; of averaging; Markov process; Met­ Borgwardt, K.H. see: Linear program- Beltrami equation; Negative curva­ Algebraic surface; Bertini theorems; ric transitivity; Oscillations, theory ming ture, surface of Cremona group of; Perturbation theory; Poincare Borho, W. see: Dimension Bendixson, I. see: Bendixson crite­ Bertrand, G. see: Poincare-Bertrand return theorem; Qualitative theory Born, M. see: Scattering matrix rion; Bendixson sphere; Degener­ formula of differential equations; Quantum Borsuk, K. see: Borsuk problem ate equilibrium position; Poincare-­ Bertrand, J. see: Bertrand criterion; field theory; Quasi-averages, method Boscovic, R. see: Gravitation Bendixson theory; Qualitative theory Bertrand curves; Bertrand paradox; of; Renormalization Bose, S. see: Bose-Einstein statistics of differential equations Bertrand postulate; Games, theory Bohl, P.G. see: Bohl almost-periodic Bott, R. see: Bott periodicity theorem; Benes, V.E. .see: Stochastic processes, of functions; Brouwer theorem; Func­ Foliation; Frobenius theorem; La­ filtering of Besicovitch, A.S. see: Hausdorff mea­ tions of a real variable, theory of cuna; Tight and taut immersions Berge, C. see: Infinite game sure Bohlin, B. see: Perturbation theory Bouguer, P. see: Curve of pursuit Bergman, G. see: Dimension Besov, O.V. see: Imbedding theorems Bohman, H. see: Approximation of Bouquet, C. see: Sokhotskii theorem Bergman, S. see: Bergman kernel func­ Bessel, F. W. see: Bessel equation; Bessel functions, linear methods Bouquet, T. see: Briot-Bouquet equa- tion; Bergman-Weil representation inequality; Fourier series; Orthogo­ Bohr, H. see: Almost-periodic func­ tion Bernays, P. see: Formal mathematical nal series; Umbra) calculus tion; Average rotation; Bohr almost­ Bourbaki, N. see: Barrelled space; analysis Beth, E.W. see: Heyting formal system;
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages16 Page
-
File Size-